ﻻ يوجد ملخص باللغة العربية
Stereoscopic virtual reality (VR) has experienced a resurgence due to flagship products such as the Oculus Rift, HTC Vive and smartphone-based VR solutions like Google Cardboard. This is causing the question to resurface: how can stereoscopic VR be useful in instruction, if at all, and what are the pedagogical best practices for its use? To address this, and to continue our work in this sphere, we performed a study of 289 introductory physics students who were sorted into three different treatment types: stereoscopic virtual reality, WebGL simulation, and static 2D images, each designed to provide information about magnetic fields and forces. Students were assessed using preliminary items designed to focus on heavily-3D systems. We report on assessment reliability, and on student performance. Overall, we find that students who used VR did not significantly outperform students using other treatment types. There were significant differences between sexes, as other studies have noted. Dependence on students self-reported 3D videogame play was observed, in keeping with previous studies, but this dependence was not restricted to the VR treatment.
Virtual reality (VR) has long promised to revolutionize education, but with little follow-through. Part of the reason for this is the prohibitive cost of immersive VR headsets or caves. This has changed with the advent of smartphone-based VR (along t
Recent years have seen a resurgence of interest in using Virtual Reality (VR) technology to benefit instruction, especially in physics and related subjects. As VR devices improve and become more widely available, there remains a number of unanswered
We report on the initial phase of an ongoing, multi-stage investigation of how to incorporate Virtual Reality (VR) technology in teaching introductory astronomy concepts. Our goal was to compare the efficacy of VR vs. conventional teaching methods us
A ball on a stick is a common and simple activity for teaching the phases of the Moon. This activity, like many others in physics and astronomy, gives students a perspective they otherwise could only imagine. For Moon phases, a third person view and
Immersive virtual reality (VR) has enormous potential for education, but classroom resources are limited. Thus, it is important to identify whether and when VR provides sufficient advantages over other modes of learning to justify its deployment. In