ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Dirac operators with singular interactions supported on closed curves

158   0   0.0 ( 0 )
 نشر من قبل Konstantin Pankrashkin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the two-dimensional Dirac operator with an arbitrary combination of electrostatic and Lorentz scalar $delta$-interactions of constant strengths supported on a smooth closed curve. For any combination of the coupling constants a rigorous description of the self-adjoint realizations of the operators is given and the qualitative spectral properties are described. The analysis covers also all so-called critical combinations of coupling constants, for which there is a loss of regularity in the operator domain. In this case, if the mass is non-zero, the resulting operator has an additional point in the essential spectrum, and the position of this point inside the central gap can be made arbitrary by a suitable choice of the coupling constants. The analysis is based on a combination of the extension theory of symmetric operators with a detailed study of boundary integral operators viewed as periodic pseudodifferential operators.



قيم البحث

اقرأ أيضاً

The notion of singular reduction operators, i.e., of singular operators of nonclassical (conditional) symmetry, of partial differential equations in two independent variables is introduced. All possible reductions of these equations to first-order OD Es are are exhaustively described. As examples, properties of singular reduction operators of (1+1)-dimensional evolution and wave equations are studied. It is shown how to favourably enhance the derivation of nonclassical symmetries for this class by an in-depth prior study of the corresponding singular vector fields.
In this work we consider the two-dimensional Dirac operator with general local singular interactions supported on a closed curve. A systematic study of the interaction is performed by decomposing it into a linear combination of four elementary intera ctions: electrostatic, Lorentz scalar, magnetic, and a fourth one which can be absorbed by using unitary transformations. We address the self-adjointness and the spectral description of the underlying Dirac operator, and moreover we describe its approximation by Dirac operators with regular potentials.
254 - Loic Le Treust 2012
We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi = 0 {equation*} where $Omega>m>0,$ $chi$ is compactly supported and [F(x) = {{array}{ll} p|x|^{p-1} & text{if} |x|>0 0 & text{if} x=0 {array}.] with $pin(0,1),$ under some restrictions on the parameters $p$ and $Omega.$ We study also the behavior of the solutions as $p$ tends to zero to establish the link between these equations and the M.I.T. bag model ones.
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte d on $Sigma$ are studied. For large enough $minmathbb{N}$ the difference of $m$th powers of resolvents of such a Schrodinger operator and the free Laplacian is known to belong to the trace class. We prove trace formulae, in which the trace of the resolvent power difference in $L^2(mathbb{R}^d)$ is written in terms of Neumann-to-Dirichlet maps on the boundary space $L^2(Sigma)$.
This paper deals with the massive three-dimensional Dirac operator coupled with a Lorentz scalar shell interaction supported on a compact smooth surface. The rigorous definition of the operator involves suitable transmission conditions along the surf ace. After showing the self-adjointness of the resulting operator we switch to the investigation of its spectral properties, in particular, to the existence and non-existence of eigenvalues. In the case of an attractive coupling, we study the eigenvalue asymptotics as the mass becomes large and show that the behavior of the individual eigenvalues and their total number are governed by an effective Schrodinger operator on the boundary with an external Yang-Mills potential and a curvature-induced potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا