ﻻ يوجد ملخص باللغة العربية
We consider the precision $Delta varphi$ with which the parameter $varphi$, appearing in the unitary map $U_varphi = e^{ i varphi Lambda}$ acting on some type of probe system, can be estimated when there is a finite amount of prior information about $varphi$. We show that, if $U_varphi$ acts $n$ times in total, then, asymptotically in $n$, there is a tight lower bound $Delta varphi geq frac{pi}{n (lambda_+ - lambda_-)}$, where $lambda_+$, $lambda_-$ are the extreme eigenvalues of the generator $Lambda$. This is greater by a factor of $pi$ than the conventional Heisenberg limit, derived from the properties of the quantum Fisher information. That is, the conventional bound is never saturable. Our result makes no assumptions on the measurement protocol, and is relevant not only in the noiseless case but also if noise can be eliminated using quantum error correction techniques.
To quantify quantum optical coherence requires both the particle- and wave-natures of light. For an ideal laser beam [1,2,3], it can be thought of roughly as the number of photons emitted consecutively into the beam with the same phase. This number,
The major challenges to fabricate quantum processors and future nano solid state devices are material modification techniques with nanometre resolution and suppression of statistical fluctuations of dopants or qubit carriers. Based on a segmented ion
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim
We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the one-axis twisting interaction, well known for generating spin squeezin
In this work an exactly solvable model of N two-level systems interacting with a single bosonic dephasing reservoir is considered to unravel the role played by collective non-Markovian dephasing. We show that phase estimation with entangled states fo