ﻻ يوجد ملخص باللغة العربية
In this paper we present a numerical discretization of the coupled elasto-acoustic wave propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) approach in a three-dimensional setting. The unknowns of the coupled problem are the displacement field and the velocity potential, in the elastic and the acoustic domains, respectively, thereby resulting in a symmetric formulation. After stating the main theoretical results, we assess the performance of the method by convergence tests carried out on both matching and non-matching grids, and we simulate realistic scenarios where elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves and the scattering of elastic waves by an underground acoustic cavity. Numerical simulations are carried out by means of the code SPEED, available at http://speed.mox.polimi.it.
We build a multi-element variant of the smoothness increasing accuracy conserving (SIAC) shock capturing technique proposed for single element spectral methods by Wissink et al. (B.W. Wissink, G.B. Jacobs, J.K. Ryan, W.S. Don, and E.T.A. van der Weid
Finite element simulations have been used to solve various partial differential equations (PDEs) that model physical, chemical, and biological phenomena. The resulting discretized solutions to PDEs often do not satisfy requisite physical properties,
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, di
In this work, we propose a local multiscale model reduction approach for the time-domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the heterogeneities of the coefficient field, and the equation is solved globally on
In this paper, we develop a provably energy stable and conservative discontinuous spectral element method for the shifted wave equation in second order form. The proposed method combines the advantages and central ideas of very successful numerical t