ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization Dynamics in 1D Chains of Ferromagnetic Nanoparticles Coupled with Dipolar Interactions: Blocking Temperature

69   0   0.0 ( 0 )
 نشر من قبل Francois Vernay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is so far no clear-cut experimental analysis that can determine whether dipole-dipole interactions enhance or reduce the blocking temperature $T_{B}$ of nanoparticle assemblies. It seems that the samples play a central role in the problem and therefore, their geometry should most likely be the key factor in this issue. Yet, in a previous work, Jonsson and Garcia-Palacios did investigate theoretically this problem in a weak-interaction limit and without the presence of an external DC field. Based on symmetry arguments they reached the conclusion that the variation of the relaxation rate is monotonous. In the presence of an external magnetic field we show that these arguments may no longer hold depending on the experimental geometry. Therefore, the aim of this paper is to evaluate the variation of $T_{B}$ for a model system consisting of a chain of ferromagnetic nanoparticles coupled with long-range dipolar interaction with two different geometries. Rather than addressing a quantitative analysis, we focus on the qualitative variation of $T_{B}$ as a function of the interparticle distance a and of the external field $h$. The two following situations are investigated: a linear chain with a longitudinal axial anisotropy in a longitudinal DC field and a linear chain with a longitudinal axial anisotropy in a transverse field.



قيم البحث

اقرأ أيضاً

The role of dipolar interactions among Ni nanoparticles (NP) embedded in an amorphous SiO2/C matrix with different concentrations has been studied performing ac magnetic susceptibility Chi_ac measurements. For very diluted samples, with Ni concentrat ions < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.
Single-molecule magnets (SMMs) are promising elements for quantum informatics. In the presence of strong magnetic anisotropy, they exhibit magnetization blocking - a magnetic memory effect at the level of a single molecule. Recent studies have shown that the SMM performance scales with the height of magnetization blocking barrier. By employing molecular engineering this can be significantly modified, remaining independent from other external factors such as magnetic field. Taking advantage of hyperfine coupling of electronic and nuclear spins further enhances their functionality, however, a poor understanding of relaxation mechanisms in such SMMs limits the exploitation of nuclear-spin molecular qubits. Here we report the opening discovery of field-dependent oscillation of the magnetization blocking barrier in a new holmium metallacrown magnet driven by the switch of relaxation mechanisms involving hyperfine interaction. Single-crystal magnetic hysteresis measurements combined with first-principles calculations reveal an activated temperature dependence of magnetic relaxation dominated either by incoherent quantum tunneling of magnetization at anti-crossing points of exchange-hyperfine states or by Orbach-like processes at crossing points. We demonstrate that these relaxation mechanisms can be consecutively switched on and off by increasing the external field, which paves a way for manipulating the magnetization dynamics of SMMs using hyperfine interaction.
The finite size and surface roughness effects on the magnetization of NiO nanoparticles is investigated. A large magnetic moment arises for an antiferromagnetic nanoparticle due to these effects. The magnetic moment without the surface roughness has a non-monotonic and oscillatory dependence on $R$, the size of the particles, with the amplitude of the fluctuations varying linearly with $R$. The geometry of the particle also matters a lot in the calculation of the net magnetic moment. An oblate spheroid shape particle shows an increase in net magnetic moment by increasing oblateness of the particle. However, the magnetic moment values thus calculated are very small compared to the experimental values for various sizes, indicating that the bulk antiferromagnetic structure may not hold near the surface. We incorporate the surface roughness in two different ways; an ordered surface with surface spins inside a surface roughness shell aligned due to an internal field, and a disordered surface with randomly oriented spins inside surface roughness shell. Taking a variational approach we find that the core interaction strength is modified for nontrivial values of $Delta$ which is a signature of multi-sublattice ordering for nanoparticles. The surface roughness scale $Delta $ is also showing size dependent fluctuations, with an envelope decay $Deltasim R^{-1/5}$. The net magnetic moment values calculated using spheroidal shape and ordered surface are close to the experimental values for different sizes.
We develop an analytical approach for studying the FMR frequency shift due to dipolar interactions and surface effects in two-dimensional arrays of nanomagnets with (effective) uniaxial anisotropy along the magnetic field. For this we build a general formalism on the basis of perturbation theory that applies to dilute assemblies but which goes beyond the point-dipole approximation as it takes account of the size and shape of the nano-elements, in addition to their separation and spatial arrangement. The contribution to the frequency shift due to the shape and size of the nano-elements has been obtained in terms of their aspect ratio, their separation and the lattice geometry. We have also varied the size of the array itself and compared the results with a semi-analytical model and reached an agreement that improves as the size of the array increases. We find that the red-shift of the ferromagnetic resonance due to dipolar interactions decreases for smaller arrays. Surface effects may induce either a blue-shift or a red-shift of the FMR frequency, depending on the crystal and magnetic properties of the nano-elements themselves. In particular, some configurations of the nano-elements assemblies may lead to a full compensation between surface effects and dipole interactions.
We address the issue of inter-particle dipolar interactions in the context of magnetic hyperthermia. More precisely, the main question dealt with here is concerned with the conditions under which the specific absorption rate is enhanced or reduced by dipolar interactions. For this purpose, we propose a theory for the calculation of the AC susceptibility, and thereby the specific absorption rate, for a monodisperse two-dimensional assembly of nanoparticles with oriented anisotropy, in the presence of a DC magnetic field, in addition to the AC magnetic field. We also study the competition between the dipolar interactions and the DC field, both in the transverse and longitudinal configurations. In both cases, we find that the specific absorption rate has a maximum at some critical DC field that depends on the inter-particle separation. In the longitudinal setup, this critical field falls well within the range of experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا