ﻻ يوجد ملخص باللغة العربية
Planck, SPT and ACT surveys have clearly demonstrated that Cosmic Microwave Background (CMB) experiments, while optimised for cosmological measurements, have made important contributions to the field of extragalactic astrophysics in the last decade. Future CMB experiments have the potential to make even greater contributions. One example is the detection of high-z galaxies with extreme gravitational amplifications. The combination of flux boosting and of stretching of the images has allowed the investigation of the structure of galaxies at z ~3 with the astounding spatial resolution of about 60 pc. Another example is the detection of proto-clusters of dusty galaxies at high z when they may not yet possess the hot intergalactic medium allowing their detection in X-rays or via the Sunyaev-Zeldovich effect. Next generation CMB experiments, like PICO, CORE, CMB-Bharat from space and Simons Observatory and CMB-S4 from the ground, will discover several thousands of strongly lensed galaxies out to z~6 or more and of galaxy proto-clusters caught in the phase when their member galaxies where forming the bulk of their {stars. They will also detect tens of thousands of local dusty galaxies and thousands of radio sources at least up to z~5. Moreover they will measure the polarized emission of thousands of radio sources and of dusty galaxies at mm/sub-mm wavelengths.
Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of re
New telescopes are being built to measure the Cosmic Microwave Background (CMB) with unprecedented sensitivity, including Simons Observatory (SO), CCAT-prime, the BICEP Array, SPT-3G, and CMB Stage-4. We present observing strategies for telescopes lo
In the next decade, new ground-based Cosmic Microwave Background (CMB) experiments such as Simons Observatory (SO), CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improvin
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primor
CMB surveys provide, for free, blindly selected samples of extragalactic radio sources at much higher frequencies than traditional radio surveys. Next-generation, ground-based CMB experiments with arcmin resolution at mm wavelengths will provide samp