ترغب بنشر مسار تعليمي؟ اضغط هنا

Intensity of waves inside a strongly disordered medium

84   0   0.0 ( 0 )
 نشر من قبل Sergey E Skipetrov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anderson localization does not lead to an exponential decay of intensity of an incident wave with the depth inside a strongly disordered three-dimensional medium. Instead, the average intensity is roughly constant in the first half of a disordered slab, sharply drops in a narrow region in the middle of the sample, and then remains low in the second half of the sample. A universal, scale-free spatial distribution of average intensity is found at mobility edges where the intensity exhibits strong sample-to-sample fluctuations. Our numerical simulations allow us to discriminate between two competing local diffusion theories of Anderson localization and to pinpoint a deficiency of the self-consistent theory.



قيم البحث

اقرأ أيضاً

We investigate the scattering of elastic waves off a disordered region described by a one-dimensional random-phase sine-Gordon model. The collective pinning results in an effective static disorder potential with universal and non-Gaussian correlation s, acting on propagating waves. We find signatures of the correlations in the wave transmission in a wide frequency range, which covers both the weak and strong localization regimes. Our theory elucidates the dynamics of collectively-pinned phases occurring in any natural or synthetic elastic medium. The latter one is exemplified by a one-dimensional array of Josephson junctions, for which we specify our results. The obtained results provide benchmarks for the array-enabled quantum simulations addressing the dynamics in broader and yet-unexplored domains of individual pinning and quantum Bose glass.
82 - P. Bozsoki 2005
A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution.
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have be en put forward to support the basic concept. Typically, averages of time-dependent global observables have been considered, such as the charge imbalance. We here investigate within the disordered spin-less Hubbard ($t-V$) model how dephasing manifests in time dependent variances of observables. We find that after quenching a Neel state the local charge density exhibits strong temporal fluctuations with a damping that is sensitive to disorder $W$: variances decay in a power law manner, $t^{-zeta}$, with an exponent $zeta(W)$ strongly varying with $W$. A heuristic argument suggests the form, $zetaapproxalpha(W)xi_text{sp}$, where $xi_text{sp}(W)$ denotes the noninteracting localization length and $alpha(W)$ characterizes the multifractal structure of the dynamically active volume fraction of the many-body Hilbert space. In order to elucidate correlations underlying the damping mechanism, exact computations are compared with results from the time-dependent Hartree-Fock approximation. Implications for experimentally relevant observables, such as the imbalance, will be discussed.
Structures with heavy-tailed distributions of disorder occur widely in nature. The evolution of such systems, as in foraging for food or the occurrence of earthquakes is generally analyzed in terms of an incoherent series of events. But the study of wave propagation or lasing in such systems requires the consideration of coherent scattering. We consider the distribution of wave energy inside 1D random media in which the spacing between scatterers follow a Levy $alpha$-stable distribution characterized by a power-law decay with exponent $alpha$. We show that the averages of the intensity and logarithmic intensity are given in terms of the average of the logarithm of transmission and the depth into the sample raised to the power $alpha$. Mapping the depth into the sample to the number of scattering elements yields intensity statistics that are identical to those found for Anderson localization in standard random media. This allows for the separation for the impacts of disorder distribution and wave coherence in random media.
We study the propagation of waves in a medium in which the wave velocity fluctuates randomly in time. We prove that at long times, the statistical distribution of the wave energy is log-normal, with the average energy growing exponentially. For weak disorder, another regime preexists at shorter times, in which the energy follows a negative exponential distribution, with an average value growing linearly with time. The theory is in perfect agreement with numerical simulations, and applies to different kinds of waves. The existence of such universal statistics bridges the fields of wave propagation in time-disordered and space-disordered media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا