ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal location of resources maximizing the total population size in logistic models

92   0   0.0 ( 0 )
 نشر من قبل Yannick Privat
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we consider a species whose population density solves the steady diffusive logistic equation in a heterogeneous environment modeled with the help of a spatially non constant coefficient standing for a resources distribution. We address the issue of maximizing the total population size with respect to the resources distribution, considering some uniform pointwise bounds as well as prescribing the total amount of resources. By assuming the diffusion rate of the species large enough, we prove that any optimal configuration is bang-bang (in other words an extreme point of the admissible set) meaning that this problem can be recast as a shape optimization problem, the unknown domain standing for the resources location. In the one-dimensional case, this problem is deeply analyzed, and for large diffusion rates, all optimal configurations are exhibited. This study is completed by several numerical simulations in the one dimensional case.



قيم البحث

اقرأ أيضاً

In this article, we give an in-depth analysis of the problem of optimising the total population size for a standard logistic-diffusive model. This optimisation problem stems from the study of spatial ecology and amounts to the following question: ass uming a species evolves in a domain, what is the best way to spread resources in order to ensure a maximal population size at equilibrium? {In recent years, many authors contributed to this topic.} We settle here the proof of two fundamental properties of optimisers: the bang-bang one which had so far only been proved under several strong assumptions, and the other one is the fragmentation of maximisers. Here, we prove the bang-bang property in all generality using a new spectral method. The technique introduced to demonstrate the bang-bang character of optimizers can be adapted and generalized to many optimization problems with other classes of bilinear optimal control problems where the state equation is semilinear and elliptic. We comment on it in a conclusion section.Regarding the geometry of maximisers, we exhibit a blow-up rate for the $BV$-norm of maximisers as the diffusivity gets smaller: if $O$ is an orthotope and if $m_mu$ is an optimal control, then $Vert m_muVert_{BV}gtrsim sqrt{mu}$. The proof of this results relies on a very fine energy argument.
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
104 - Luis Almeida 2020
We formulate a general SEIR epidemic model in a heterogenous population characterized by some trait in a discrete or continuous subset of a space R d. The incubation and recovery rates governing the evolution of each homogenous subpopulation depend u pon this trait, and no restriction is assumed on the contact matrix that defines the probability for an individual of a given trait to be infected by an individual with another trait. Our goal is to derive and study the final size equation fulfilled by the limit distribution of the population. We show that this limit exists and satisfies the final size equation. The main contribution is to prove the uniqueness of this solution among the distributions smaller than the initial condition. We also establish that the dominant eigenvalue of the next-generation operator (whose initial value is equal to the basic reproduction number) decreases along every trajectory until a limit smaller than 1. The results are shown to remain valid in presence of diffusion term. They generalize previous works corresponding to finite number of traits (including metapopulation models) or to rank 1 contact matrix (modeling e.g. susceptibility or infectivity presenting heterogeneity independently of one another).
We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural bo undary conditions, we show that the equation admits entropy solutions and prove regularity and uniqueness of weak solutions when they exist. We then investigate a particular class of weak solutions studied in previous work of the first author and produce numerical simulations of these solutions. After introducing an optimal transportation problem for the sediment flow, we show that this class of weak solutions implements the optimal transportation of the sediment.
111 - James Cruise , Stan Zachary 2018
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee t demand. This requires an understanding of how to optimally schedule multiple storage facilities. The present paper studies this problem in the cases where the objective is the minimisation of expected energy unserved (EEU) and also a form of weighted EEU in which the unit cost of unserved energy is higher at higher levels of unmet demand. We also study how the contributions of individual stores may be identified for the purposes of their inclusion in electricity capacity markets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا