ﻻ يوجد ملخص باللغة العربية
Network reconfiguration is an effective strategy for different purposes of distribution systems (DSs), e.g., resilience enhancement. In particular, DS automation, distributed generation integration and microgrid (MG) technology development, etc., are empowering much more flexible reconfiguration and operation of the system, e.g., DSs or MGs with flexible boundaries. However, the formulation of DS reconfiguration-related optimization problems to include those new flexibilities is non-trivial, especially for the issue of topology, which has to be radial. That is, existing methods of formulating radiality constraints can cause underutilization of DS flexibilities. Thus, this work proposes a new method for radiality constraints formulation fully enabling the topological and some other related flexibilities of DSs, so that the reconfiguration-related optimization problems can have extended feasibility and enhanced optimality. Graph-theoretic supports are provided to certify its theoretical validity. As integer variables are involved, we also analyze the tightness and compactness issues. The proposed radiality constraints are specifically applied to post-disaster MG formation, which is involved in many DS resilience-oriented service restoration and/or infrastructure recovery problems. The resulting new MG formation model, which allows more flexible merge and/or separation of sub-grids, etc., establishes superiority over the models in the literature. Case studies are conducted on two test systems.
Radiality constraints are involved in both distribution system restoration and reconfiguration problems. However, a set of widely used radiality constraints, i.e., the spanning tree (ST) constraints, has its limitations which have not been well recog
In this paper, an attack-resilient estimation algorithm is presented for linear discrete-time stochastic systems with state and input constraints. It is shown that the state estimation errors of the proposed estimation algorithm are practically exponentially stable.
We propose a framework for resilience in a networked heterogeneous multi-robot team subject to resource failures. Each robot in the team is equipped with resources that it shares with its neighbors. Additionally, each robot in the team executes a tas
This paper presents a two-layer, four-level distributed control method for networked microgrid (NMG) systems, taking into account the proprietary nature of microgrid (MG) owners. The proposed control architecture consists of a MG-control layer and a
Repair crews (RCs) and mobile power sources (MPSs) are critical resources for distribution system (DS) outage management after a natural disaster. However, their logistics is not well investigated. We propose a resilient scheme for disaster recovery