ترغب بنشر مسار تعليمي؟ اضغط هنا

Response of CsI[Na] to Nuclear Recoils: Impact on Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS)

76   0   0.0 ( 0 )
 نشر من قبل Juan I. Collar
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new measurement of the quenching factor for low-energy nuclear recoils in CsI[Na] is presented. Past measurements are revisited, identifying and correcting several systematic effects. The resulting global data are well-described by a physics-based model for the generation of scintillation by ions in this material, in agreement with phenomenological considerations. The uncertainty in the new model is reduced by a factor of four with respect to an energy-independent quenching factor initially adopted as a compromise by the COHERENT collaboration. A significantly improved agreement with Standard Model predictions for the first measurement of CE$ u$NS is generated. We emphasize the critical impact of the quenching factor on the search for new physics via CE$ u$NS experiments.



قيم البحث

اقرأ أيضاً

623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
121 - N. Van Dessel , V. Pandey , H. Ray 2020
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.
The deployment of a low-noise 3 kg p-type point contact germanium detector at the Dresden-II power reactor, 8 meters from its 2.96 GW$_{th}$ core, is described. This location provides an unprecedented (anti)neutrino flux of 8.1$times 10^{13} ~bar{ u_ {e}}/$cm$^{2}$s. When combined with the 0.2 keV$_{ee}$ detector threshold achieved, a first measurement of CE$ u$NS from a reactor source appears to be within reach. We report on the characterization and abatement of backgrounds during initial runs, deriving improved limits on extensions of the Standard Model involving a light vector mediator, from preliminary data.
We report the first measurement of coherent elastic neutrino-nucleus scattering (cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer cevns over the background-o nly null hypothesis with greater than $3sigma$ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 $pm$ 0.7) $times$10$^{-39}$ cm$^2$ -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the cevns process and provides improved constraints on non-standard neutrino interactions.
109 - C. G. Payne , S. Bacca , G. Hagen 2019
Coherent elastic neutrino scattering on the 40Ar nucleus is computed with coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics. Our approach is validated by calculating the charge form fa ctor and comparing it to data from electron scattering. We make predictions for the weak form factor, the neutron radius, and the neutron skin, and estimate systematic uncertainties. The neutron-skin thickness of 40Ar40 is consistent with results from density functional theory. Precision measurements from coherent elastic neutrino-nucleus scattering could potentially be used to extract these observables and help to constrain nuclear models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا