ﻻ يوجد ملخص باللغة العربية
The $f(R,T)$ gravity field equations depend generically on both the Ricci scalar $R$ and trace of the energy-momentum tensor $T$. Within the assumption of perfect fluids, the theory carries an arbitrariness regarding the choice of the matter lagrangian density $mathcal{L}$, not uniquely defined. Such an arbitrariness can be evaded by working with the trace of the theory field equations. From such an equation, one can obtain a form for $mathcal{L}$, which does not carry the arbitrariness. The obtained form for $mathcal{L}$ shows that the $f(R,T)$ gravity is unimodular. A new version of the theory is, therefore, presented and forthcoming applications are expected.
Wormholes are tunnels connecting two different points in space-time. In Einsteins General Relativity theory, wormholes are expected to be filled by exotic matter, i.e., matter that does not satisfy the energy conditions and may have negative density.
In this paper, we present the cosmological scenario obtained from $f(R,T)$ gravity by using an exponential dependence on the trace of the energy-momentum tensor. With a numerical approach applied to the equations of motion, we show several precise fi
In some inflation scenarios such as $R^{2}$ inflation, a gravitational scalar degrees of freedom called scalaron is identified as inflaton. Scalaron linearly couples to matter via the trace of energy-momentum tensor. We study scenarios with a sequest
We study the effective energy-momentum tensor (EMT) for cosmological perturbations and formulate the gravitational back-reaction problem in a gauge invariant manner. We analyze the explicit expressions for the EMT in the cases of scalar metric fluctu
Relativistic kinetic theory is applied to the study of the balance equations for relativistic multicomponent mixtures, comparing the approaches corresponding to Eckarts and Landau-Lifshitzs frames. It is shown that the concept of particle velocity re