Symmetric div-quasiconvexity and the relaxation of static problems


الملخص بالإنكليزية

We consider problems of static equilibrium in which the primary unknown is the stress field and the solutions maximize a complementary energy subject to equilibrium constraints. A necessary and sufficient condition for the sequential lower-semicontinuity of such functionals is symmetric ${rm div}$-quasiconvexity, a special case of Fonseca and Mullers $A$-quasiconvexity with $A = {rm div}$ acting on $R^{ntimes n}_{sym}$. We specifically consider the example of the static problem of plastic limit analysis and seek to characterize its relaxation in the non-standard case of a non-convex elastic domain. We show that the symmetric ${rm div}$-quasiconvex envelope of the elastic domain can be characterized explicitly for isotropic materials whose elastic domain depends on pressure $p$ and Mises effective shear stress $q$. The envelope then follows from a rank-$2$ hull construction in the $(p,q)$-plane. Remarkably, owing to the equilibrium constraint the relaxed elastic domain can still be strongly non-convex, which shows that convexity of the elastic domain is not a requirement for existence in plasticity.

تحميل البحث