ﻻ يوجد ملخص باللغة العربية
We provide a macroscopic theory and experimental results for magnetic resonances of antiferromagnetically-coupled ferrimagnets. Our theory, which interpolates the dynamics of antiferromagnets and ferromagnets smoothly, can describe ferrimagnetic resonances across the angular momentum compensation point. We also present experimental results for spin-torque induced ferrimagnetic resonance at several temperatures. The spectral analysis based on our theory reveals that the Gilbert damping parameter, which has been considered to be strongly temperature dependent, is insensitive to temperature. We envision that our work will facilitate further investigation of ferrimagnetic dynamics by providing a theoretical framework suitable for a broad range of temperatures.
We investigate the Gilbert damping parameter for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, the Gilbert damping parameter was as low as 0.0072 and w
We present results on the identification of phase transitions in ferrimagnetic GdFeCo alloys using machine learning. The approach for finding phase transitions in the system is based on the `learning by confusion scheme, which allows one to character
We analyze the temperature dependence of the electron spin resonance linewidth above the critical region in exchange-coupled magnetic insulators. The focus is on separating the contributions to the linewidth from spin-spin interactions, spin-one-phon
It has been predicted that transverse spin current can propagate coherently (without dephasing) over a long distance in antiferromagnetically ordered metals. Here, we estimate the dephasing length of transverse spin current in ferrimagnetic CoGd allo
Using first-principles electronic structure calculations, we have studied the dependence of the Curie temperature on external hydrostatic pressure for random Ni2MnSn Heusler alloys doped with Cu and Pd atoms, over the entire range of dopant concentra