ترغب بنشر مسار تعليمي؟ اضغط هنا

The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning

67   0   0.0 ( 0 )
 نشر من قبل Suyun Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration of the SMG method, a stochastic multi-gradient direction is calculated by solving a quadratic subproblem, and it is shown that this direction is biased even when all individual gradient estimators are unbiased. We establish rates to compute a point in the Pareto front, of order similar to what is known for stochastic gradient in both convex and strongly convex cases. The analysis handles the bias in the multi-gradient and the unknown a priori weights of the limiting Pareto point. The SMG method is framed into a Pareto-front type algorithm for the computation of the entire Pareto front. The Pareto-front SMG algorithm is capable of robustly determining Pareto fronts for a number of synthetic test problems. One can apply it to any stochastic MOO problem arising from supervised machine learning, and we report results for logistic binary classification where multiple objectives correspond to distinct-sources data groups.



قيم البحث

اقرأ أيضاً

Many engineering problems have multiple objectives, and the overall aim is to optimize a non-linear function of these objectives. In this paper, we formulate the problem of maximizing a non-linear concave function of multiple long-term objectives. A policy-gradient based model-free algorithm is proposed for the problem. To compute an estimate of the gradient, a biased estimator is proposed. The proposed algorithm is shown to achieve convergence to within an $epsilon$ of the global optima after sampling $mathcal{O}(frac{M^4sigma^2}{(1-gamma)^8epsilon^4})$ trajectories where $gamma$ is the discount factor and $M$ is the number of the agents, thus achieving the same dependence on $epsilon$ as the policy gradient algorithm for the standard reinforcement learning.
83 - Jongho Park 2019
This paper gives a unified convergence analysis of additive Schwarz methods for general convex optimization problems. Resembling to the fact that additive Schwarz methods for linear problems are preconditioned Richardson methods, we prove that additi ve Schwarz methods for general convex optimization are in fact gradient methods. Then an abstract framework for convergence analysis of additive Schwarz methods is proposed. The proposed framework applied to linear elliptic problems agrees with the classical theory. We present applications of the proposed framework to various interesting convex optimization problems such as nonlinear elliptic problems, nonsmooth problems, and nonsharp problems.
Machine learning techniques have been developed to learn from complete data. When missing values exist in a dataset, the incomplete data should be preprocessed separately by removing data points with missing values or imputation. In this paper, we pr opose an online approach to handle missing values while a classification model is learnt. To reach this goal, we develop a multi-objective optimization model with two objective functions for imputation and model selection. We also propose three formulations for imputation objective function. We use an evolutionary algorithm based on NSGA II to find the optimal solutions as the Pareto solutions. We investigate the reliability and robustness of the proposed model using experiments by defining several scenarios in dealing with missing values and classification. We also describe how the proposed model can contribute to medical informatics. We compare the performance of three different formulations via experimental results. The proposed model results get validated by comparing with a comparable literature.
Multi-objective optimization (MOO) is a prevalent challenge for Deep Learning, however, there exists no scalable MOO solution for truly deep neural networks. Prior work either demand optimizing a new network for every point on the Pareto front, or in duce a large overhead to the number of trainable parameters by using hyper-networks conditioned on modifiable preferences. In this paper, we propose to condition the network directly on these preferences by augmenting them to the feature space. Furthermore, we ensure a well-spread Pareto front by penalizing the solutions to maintain a small angle to the preference vector. In a series of experiments, we demonstrate that our Pareto fronts achieve state-of-the-art quality despite being computed significantly faster. Furthermore, we showcase the scalability as our method approximates the full Pareto front on the CelebA dataset with an EfficientNet network at a tiny training time overhead of 7% compared to a simple single-objective optimization. We make our code publicly available at https://github.com/ruchtem/cosmos.
155 - Ke Li , Renzhi Chen , Guangtao Fu 2017
When solving constrained multi-objective optimization problems, an important issue is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, two -archive evolutionary algorithm, for constrained multi-objective optimization. It maintains two co-evolving populations simultaneously: one, denoted as convergence archive, is the driving force to push the population toward the Pareto front; the other one, denoted as diversity archive, mainly tends to maintain the population diversity. In particular, to complement the behavior of the convergence archive and provide as much diversified information as possible, the diversity archive aims at exploring areas under-exploited by the convergence archive including the infeasible regions. To leverage the complementary effects of both archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate mating parents from them according to their evolution status. Comprehensive experiments on a series of benchmark problems and a real-world case study fully demonstrate the competitiveness of our proposed algorithm, comparing to five state-of-the-art constrained evolutionary multi-objective optimizers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا