ﻻ يوجد ملخص باللغة العربية
Big data often has emergent structure that exists at multiple levels of abstraction, which are useful for characterizing complex interactions and dynamics of the observations. Here, we consider multiple levels of abstraction via a multiresolution geometry of data points at different granularities. To construct this geometry we define a time-inhomogeneous diffusion process that effectively condenses data points together to uncover nested groupings at larger and larger granularities. This inhomogeneous process creates a deep cascade of intrinsic low pass filters on the data affinity graph that are applied in sequence to gradually eliminate local variability while adjusting the learned data geometry to increasingly coarser resolutions. We provide visualizations to exhibit our method as a continuously-hierarchical clustering with directions of eliminated variation highlighted at each step. The utility of our algorithm is demonstrated via neuronal data condensation, where the constructed multiresolution data geometry uncovers the organization, grouping, and connectivity between neurons.
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifo
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j
Developing effective descriptions of the microscopic dynamics of many physical phenomena can both dramatically enhance their computational exploration and lead to a more fundamental understanding of the underlying physics. Previously, an effective de
The fluctuation-dissipation theorem is a central result in statistical mechanics and is usually formulated for systems described by diffusion processes. In this paper, we propose a generalization for a wider class of stochastic processes, namely the
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows