ترغب بنشر مسار تعليمي؟ اضغط هنا

Three dimensional dust mapping of 12 supernovae remnants in the Galactic anticentre

177   0   0.0 ( 0 )
 نشر من قبل Bin Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present three dimensional (3D) dust mapping of 12 supernova remnants (SNRs) in the Galactic anti-center (Galactic longitude $l$ between 150degr and 210degr) based on a recent 3D interstellar extinction map. The dust distribution of the regions which cover the full extents in the radio continuum for the individual SNRs are discussed. Four SNRs show significant spatial coincidences between molecular clouds (MCs) revealed from the 3D extinction mapping and the corresponding radio features. The results confirm the interactions between these SNRs and their surrounding MCs. Based on these correlations, we provide new distance estimates of the four SNRs, G189.1+3.0 (IC443, $d=1729^{+116}_{-94} rm ,pc$), G190.9-2.2 ($d=1036^{+17}_{-81} rm ,pc$), G205.5+0.5 ($d=941^{+96}_{-94}$ or $1257^{+92}_{-101} rm ,pc$) and G213.0-0.6 ($d=1146^{+79}_{-80} rm ,pc$). In addition, we find indirect evidences of potential interactions between SNRs and MCs for three other SNRs. New distance constraints are also given for these three SNRs.



قيم البحث

اقرأ أيضاً

We present a three dimensional (3D) extinction analysis in the region toward the supernova remnant (SNR) S147 (G180.0-1.7) using multi-band photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2M ASS and WISE. We isolate a previously unrecognised dust structure likely to be associated with SNR S147. The structure, which we term as S147 dust cloud, is estimated to have a distance $d$ = 1.22 $pm$ 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion, and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.
The origin of interstellar dust in galaxies is poorly understood, particularly the relative contributions from supernovae and the cool stellar winds of low-intermediate mass stars. Here, we present Herschel PACS and SPIRE photometry at 70-500um of th e historical young supernova remnants: Kepler and Tycho; both thought to be the remnants of Type Ia explosion events. We detect a warm dust component in Keplers remnant with T = 82K and mass 0.0031Msun; this is spatially coincident with thermal X-ray emission optical knots and filaments, consistent with the warm dust originating in the circumstellar material swept up by the primary blast wave of the remnant. Similarly for Tychos remnant, we detect warm dust at 90K with mass 0.0086Msun. Comparing the spatial distribution of the warm dust with X-rays from the ejecta and swept-up medium, and Ha emission arising from the post-shock edge, we show that the warm dust is swept up interstellar material. We find no evidence of a cool (25-50 K) component of dust with mass >0.07Msun as observed in core-collapse remnants of massive stars. Neither the warm or cold dust components detected here are spatially coincident with supernova ejecta material. We compare the lack of observed supernova dust with a theoretical model of dust formation in Type Ia remnants which predicts dust masses of 0.088(0.017)Msun for ejecta expanding into surrounding densities of 1(5)cm-3. The model predicts that silicon- and carbon-rich dust grains will encounter the interior edge of the observed dust emission at 400 years confirming that the majority of the warm dust originates from swept up circumstellar or interstellar grains (for Kepler and Tycho respectively). The lack of cold dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the missing iron mass observed in ejecta.
We present a detailed analysis of the selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). LSS-GAC was designed to obtain low resolution optical spectra for a sample of more than 3 million stars in the Galactic anti-centre. The second release of value-added catalogues of the LSS-GAC (LSS-GAC DR2) contains stellar parameters, including radial velocity, atmospheric parameters, elemental abundances and absolute magnitudes deduced from 1.8 million spectra of 1.4 million unique stars targeted by the LSS-GAC between 2011 and 2014. For many studies using this database, such as those investigating the chemodynamical structure of the Milky Way, a detailed understanding of the selection function of the survey is indispensable. In this paper, we describe how the selection function of the LSS-GAC can be evaluated to sufficient detail and provide selection function corrections for all spectroscopic measurements with reliable parameters released in LSS-GAC DR2. The results, to be released as new entries in the LSS-GAC value-added catalogues, can be used to correct the selection effects of the catalogue for scientific studies of various purposes.
We present a three-dimensional (3D) extinction map of the southern sky. The map covers the SkyMapper Southern Survey (SMSS) area of $sim$ 14,000 ${rm deg^{2}}$ and has spatial resolutions between 6.9 and 27 arcmin. Based on the multi-band photometry of SMSS, the Two Micron All Sky Survey, the Wide-Field Infrared Survey Explorer Survey and the Gaia mission, we have estimated values of the $r$-band extinction for $sim$ 19 million stars with the spectral energy distribution (SED) analysis. Together with the distances calculated from the Gaia data release 2 (DR2) parallaxes, we have constructed a three-dimensional extinction map of the southern sky. By combining our 3D extinction map with those from the literature, we present an all-sky 3D extinction map, and use it to explore the 3D distribution of the Galactic dust grains. We use two different models, one consisting a single disk and another of two disks, to fit the 3D distribution of the Galactic dust grains. The data is better fitted by a two-disk model, yielding smaller values of the Bayesian Information Criterion (BIC). The best fit model has scale heights of 73 and 225 pc for the thin and thick dust disks, respectively.
224 - B.-Q. Chen , Y. Huang , H.-B. Yuan 2018
We present new three-dimensional (3D) interstellar dust reddening maps of the Galactic plane in three colours, E(G-Ks), E(Bp-Rp) and E(H-Ks). The maps have a spatial angular resolution of 6 arcmin and covers over 7000 deg$^2$ of the Galactic plane fo r Galactic longitude 0 deg $<$ $l$ $<$ 360 deg and latitude $|b|$ $<$ $10$ deg. The maps are constructed from robust parallax estimates from the Gaia Data Release 2 (Gaia DR2) combined with the high-quality optical photometry from the Gaia DR2 and the infrared photometry from the 2MASS and WISE surveys. We estimate the colour excesses, E(G-Ks), E(Bp-Rp) and E(H-Ks), of over 56 million stars with the machine learning algorithm Random Forest regression, using a training data set constructed from the large-scale spectroscopic surveys LAMOST, SEGUE and APOGEE. The results reveal the large-scale dust distribution in the Galactic disk, showing a number of features consistent with the earlier studies. The Galactic dust disk is clearly warped and show complex structures possibly spatially associated with the Sagittarius, Local and Perseus arms. We also provide the empirical extinction coefficients for the Gaia photometry that can be used to convert the colour excesses presented here to the line-of-sight extinction values in the Gaia photometric bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا