ترغب بنشر مسار تعليمي؟ اضغط هنا

Flipping-up the field: gravitational feedback as a mechanism for young clusters dispersal

244   0   0.0 ( 0 )
 نشر من قبل Manuel Zamora-Aviles Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent analyses of Gaia data have provided direct evidence that most young stellar clusters are in a state of expansion, with velocities of the order of ~0.5 km/s. Traditionally, expanding young clusters have been pictured as entities that became unbound due to the lack of gravitational binding once the gas from the parental cloud that formed the cluster has been expelled by the stellar radiation of the massive stars in the cluster. In the present contribution, we used radiation-magnetohydrodynamic numerical simulations of molecular cloud formation and evolution to understand how stellar clusters form and disperse. We found that the ionising feedback from the newborn massive stars expels the gas from the collapse centre, flipping-up the gravitational potential as a consequence of the mass removal from the inside-out. Since neither the parental clouds nor the formed shells are distributed symmetrically around the HII region, net forces pulling out the stars are present, accelerating them towards the edges of the cavity. We call this mechanism ``gravitational feedback, in which the gravity from the expelled gas appears to be the crucial mechanism producing unbound clusters that expand away from their formation centre in an accelerated way in young stellar clusters. This mechanism naturally explains the Hubble flow-like expansion observed in several young clusters.



قيم البحث

اقرأ أيضاً

331 - M. Cignoni 2010
We present a novel approach to derive the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity func tion (LF) of the cluster, the TOn is identified as a peak followed by a dip. We propose that by combining the CMD analysis with the monitoring of the spatial distribution of MS stars it is possible to reliably identify the TOn in extragalactic star forming regions. Compared to alternative methods, this technique is complementary to the turn-off dating and avoids the systematic biases affecting the PMS phase. We describe the method and its uncertainties, and apply it to the star forming region NGC346, which has been extensively imaged with the Hubble Space Telescope (HST). This study extends the LF approach in crowded extragalactic regions and opens the way for future studies with HST/WFC3, JWST and from the ground with adaptive optics.
Aim. We investigate the role of PAHs as a sink for deuterium in the interstellar medium and study UV photolysis as a potential process in the variations of the deuterium fractionation in the ISM. Methods. The UV photo-induced fragmentation of various isotopologues of D-enriched, protonated anthracene and phenanthrene ions was recorded in a FTICR mass spectrometer. IRMPD spectroscopy using FELIX provided the IR spectra that were compared to DFT vibrational spectra; reaction barriers and rates were also calculated and related to the product abundances. Results. The mass spectra for both UV and IRMPD photolysis show the loss of H from [D-C$_{14}$H$_{10}$]$^+$, whereas [H-C$_{14}$D$_{10}$]$^+$ shows a strong preference for D loss. Calculations reveal facile 1,2-H and -D shift reactions, with barriers lower than the energy supplied by the photo-excitation process. Together with confirmation of the ground-state structures via the IR spectra, we determined that the photolytic processes in the 2 PAHs are largely governed by scrambling where the H and the D atoms relocate between different peripheral C atoms. The $sim$0.1 eV difference in zero-point energy between C-H and C-D bonds ultimately leads to faster H scrambling than D scrambling, and increased H atom loss compared to D. Conclusion. Scrambling is common in PAH cations under UV radiation. Upon photoexcitation of deuterium-enriched PAHs, the scrambling results in a higher probability for the aliphatic D atom to migrate to an aromatic site, protecting it from elimination. This could lead to increased deuteration as a PAH moves towards more exposed interstellar environments. Also, large, compact PAHs with an aliphatic C-HD group on solo sites might be responsible for the majority of aliphatic C-D stretching bands seen in astronomical spectra.
The majority of massive stars ($>8$ $rm{M_{odot}}$) in OB associations are found in close binary systems. Nonetheless, the formation mechanism of these close massive binaries is not understood yet. Using literature data, we measured the radial-veloci ty dispersion ($sigma_mathrm{RV}$) as a proxy for the close binary fraction in ten OB associations in the Galaxy and the Large Magellanic Cloud, spanning an age range from 1 to 6 Myrs. We find a positive trend of this dispersion with the clusters age, which is consistent with binary hardening. Assuming a universal binary fraction of $f_mathrm{bin}$ = 0.7, we converted the $sigma_mathrm{RV}$ behavior to an evolution of the minimum orbital period $P_mathrm{cutoff}$ from $sim$9.5 years at 1 Myr to $sim$1.4 days for the oldest clusters in our sample at $sim$6 Myr. Our results suggest that binaries are formed at larger separations, and they harden in around 1 to 2 Myrs to produce the period distribution observed in few million year-old OB binaries. Such an inward migration may either be driven by an interaction with a remnant accretion disk or with other young stellar objects present in the system. Our findings constitute the first empirical evidence in favor of migration as a scenario for the formation of massive close binaries.
We present a study of the kinematics and structure of the Cep OB3b cluster based on new spectra obtained with the Hectoschelle spectrograph on the MMT and data from Spitzer, Chandr}, and Gaia. At a distance of 819+/-16 pc, Cep OB3b is one of the clos est examples of a young (~3 - 5 Myr), large (~3000 total members) cluster at the late stages of gas dispersal. The cluster is broken into two sub-clusters surrounded by a lower density halo. We fit the empirical density law of King (1962) to each sub-cluster to constrain their sizes and structure. The richer eastern sub-cluster has circular symmetry, a modest central density, and lacks molecular gas toward its core suggesting it has undergone expansion due to gas dispersal. In contrast, the western sub-cluster deviates from circular symmetry, has a smaller core size, and contains significant molecular gas near its core, suggesting that it is in an earlier phase of gas dispersal. We present posterior probability distributions for the velocity dispersions from the Hectoschelle spectra. The east will continue to expand and likely form a bound cluster with ~35% of stars remaining. The west is undergoing slower gas dispersal and will potentially form a bound cluster with ~75% of stars remaining. If the halo dissipates, this will leave two independent clusters with ~300 members; proper motions suggest that the two sub-clusters are not bound to each other.
There is growing evidence that star clusters can no longer be considered simple stellar populations (SSPs). Intermediate and old age clusters are often found to have extended main sequence turn-offs (eMSTOs) which are difficult to explain with single age isochrones, an effect attributed to rotation. In this paper, we provide the first characterisation of this effect in young (<20Myr) clusters. We determine ages for 4 young massive clusters (2 LMC, 2 Galactic) by three different methods: using the brightest single turn-off (TO) star; using the luminosity function (LF) of the TO; and by using the lowest $L_{rm bol}$ red supergiant (RSG). The age found using the cluster TO is consistently younger than the age found using the lowest RSG $L_{rm bol}$. Under the assumption that the lowest luminosity RSG age is the `true age, we argue that the eMSTOs of these clusters cannot be explained solely by rotation or unresolved binaries. We speculate that the most luminous stars above the TO are massive blue straggler stars formed via binary interaction, either as mass gainers or merger products. Therefore, using the cluster TO method to infer ages and initial masses of post-main sequence stars such as Wolf-Rayet stars, luminous blue variables and RSGs, will result in ages inferred being too young and masses too high.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا