ﻻ يوجد ملخص باللغة العربية
Recent analyses of Gaia data have provided direct evidence that most young stellar clusters are in a state of expansion, with velocities of the order of ~0.5 km/s. Traditionally, expanding young clusters have been pictured as entities that became unbound due to the lack of gravitational binding once the gas from the parental cloud that formed the cluster has been expelled by the stellar radiation of the massive stars in the cluster. In the present contribution, we used radiation-magnetohydrodynamic numerical simulations of molecular cloud formation and evolution to understand how stellar clusters form and disperse. We found that the ionising feedback from the newborn massive stars expels the gas from the collapse centre, flipping-up the gravitational potential as a consequence of the mass removal from the inside-out. Since neither the parental clouds nor the formed shells are distributed symmetrically around the HII region, net forces pulling out the stars are present, accelerating them towards the edges of the cavity. We call this mechanism ``gravitational feedback, in which the gravity from the expelled gas appears to be the crucial mechanism producing unbound clusters that expand away from their formation centre in an accelerated way in young stellar clusters. This mechanism naturally explains the Hubble flow-like expansion observed in several young clusters.
We present a novel approach to derive the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity func
Aim. We investigate the role of PAHs as a sink for deuterium in the interstellar medium and study UV photolysis as a potential process in the variations of the deuterium fractionation in the ISM. Methods. The UV photo-induced fragmentation of various
The majority of massive stars ($>8$ $rm{M_{odot}}$) in OB associations are found in close binary systems. Nonetheless, the formation mechanism of these close massive binaries is not understood yet. Using literature data, we measured the radial-veloci
We present a study of the kinematics and structure of the Cep OB3b cluster based on new spectra obtained with the Hectoschelle spectrograph on the MMT and data from Spitzer, Chandr}, and Gaia. At a distance of 819+/-16 pc, Cep OB3b is one of the clos
There is growing evidence that star clusters can no longer be considered simple stellar populations (SSPs). Intermediate and old age clusters are often found to have extended main sequence turn-offs (eMSTOs) which are difficult to explain with single