ﻻ يوجد ملخص باللغة العربية
Sensitivity analysis (SA) is an important aspect of process automation. It often aims to identify the process inputs that influence the process outputs variance significantly. Existing SA approaches typically consider the input-output relationship as a black-box and conduct extensive random sampling from the actual process or its high-fidelity simulation model to identify the influential inputs. In this paper, an alternate, novel approach is proposed using a sparse polynomial chaos expansion-based model for a class of input-output relationships represented as directed acyclic networks. The model exploits the relationship structure by recursively relating a network node to its direct predecessors to trace the output variance back to the inputs. It, thereby, estimates the Sobol indices, which measure the influence of each input on the output variance, accurately and efficiently. Theoretical analysis establishes the validity of the model as the prediction of the network output converges in probability to the true output under certain regularity conditions. Empirical evaluation on two manufacturing processes shows that the model estimates the Sobol indices accurately with far fewer observations than a state-of-the-art Monte Carlo sampling method.
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs have been extensively explored in the litera
We introduce PoCET: a free and open-scource Polynomial Chaos Expansion Toolbox for Matlab, featuring the automatic generation of polynomial chaos expansion (PCE) for linear and nonlinear dynamic systems with time-invariant stochastic parameters or in
We present randomized algorithms to compute the sumset (Minkowski sum) of two integer sets, and to multiply two univariate integer polynomials given by sparse representations. Our algorithm for sumset has cost softly linear in the combined size of th
Sensitivity indices when the inputs of a model are not independent are estimated by local polynomial techniques. Two original estimators based on local polynomial smoothers are proposed. Both have good theoretical properties which are exhibited and a