ﻻ يوجد ملخص باللغة العربية
We study a massive real scalar field that breaks translation symmetry dynamically. Higher-gradient terms favour modulated configurations and neither finite density nor temperature are needed. In the broken phase, the energy density depends on the spatial position and the linear fluctuations show phononic dispersion. We then study a related massless scalar model where the modulated vacua break also the field shift symmetry and give rise to an additional Nambu-Goldstone mode, the shifton. We discuss the independence of the shifton and the phonon and draw an analogy to rotons in superfluids. Proceeding from first-principles, we re-obtain and generalise some standard results for one-dimensional lattices. Eventually, we prove stability against geometric deformations extending existing analyses for elastic media to the higher-derivatives cases.
We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet con
In the previous paper [arXiv:0911.0679], we showed that the Reissner-Nordstrom black hole in the 5-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently la
We present a string theory construction of a gravity dual of a spatially modulated phase. In our earlier work, we showed that the Chern-Simons term in the 5-dimensional Maxwell theory destabilizes the Reissner-Nordstrom black holes in anti-de Sitter
Applying recursive renormalization group transformations to a scalar field theory, we obtain an effective quantum gravity theory with an emergent extra dimension, described by a dual holographic Einstein-Klein-Gordon type action. Here, the dynamics o
Real Clifford algebras for arbitrary number of space and time dimensions as well as their representations in terms of spinors are reviewed and discussed. The Clifford algebras are classified in terms of isomorphic matrix algebras of real, complex or