ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian approach for inverse obstacle scattering with Poisson data

87   0   0.0 ( 0 )
 نشر من قبل XiaoMei Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an acoustic obstacle reconstruction problem with Poisson data. Due to the stochastic nature of the data, we tackle this problem in the framework of Bayesian inversion. The unknown obstacle is parameterized in its angular form. The prior for the parameterized unknown plays key role in the Bayes reconstruction algorithm. The most popular used prior is the Gaussian. Under the Gaussian prior assumption, we further suppose that the unknown satisfies the total variation prior. With the hybrid prior, the well-posedness of the posterior distribution is discussed. The numerical examples verify the effectiveness of the proposed algorithm.



قيم البحث

اقرأ أيضاً

277 - J. Huang , Z. Deng , L. Xu 2021
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value inside inhomogeneities, and its shape is represented by the level set functions for which we investigate the information using the Bayesian method. In the Bayesian framework, the solution of the geometric inverse problem is defined as a posterior probability distribution. The well-posedness of the posterior distribution would be discussed, and the Markov chain Monte Carlo (MCMC) methods will be applied to generate samples from the arising posterior distribution. Numerical experiments will be presented to demonstrate the effectiveness of the proposed method.
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as the limit case of the continuous-time Parallel Tempering algorithm, where the (random) time between swaps of states between two parallel chains goes to zero. Thus, swapping states between chains occurs continuously. In the current work, we extend this idea to the context of time-discrete Markov chains and present two Markov chain Monte Carlo algorithms that follow the same paradigm as the continuous-time infinite swapping procedure. We analyze the convergence properties of such discrete-time algorithms in terms of their spectral gap, and implement them to sample from different target distributions. Numerical results show that the proposed methods significantly improve over more traditional sampling algorithms such as Random Walk Metropolis and (traditional) Parallel Tempering.
Data assisted reconstruction algorithms, incorporating trained neural networks, are a novel paradigm for solving inverse problems. One approach is to first apply a classical reconstruction method and then apply a neural network to improve its solutio n. Empirical evidence shows that such two-step methods provide high-quality reconstructions, but they lack a convergence analysis. In this paper we formalize the use of such two-step approaches with classical regularization theory. We propose data-consistent neural networks that we combine with classical regularization methods. This yields a data-driven regularization method for which we provide a full convergence analysis with respect to noise. Numerical simulations show that compared to standard two-step deep learning methods, our approach provides better stability with respect to structural changes in the test set, while performing similarly on test data similar to the training set. Our method provides a stable solution of inverse problems that exploits both the known nonlinear forward model as well as the desired solution manifold from data.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
203 - Anthony Reveillac 2009
In recent years, infinite-dimensional methods have been introduced for the Gaussian channels estimation. The aim of this paper is to study the application of similar methods to Poisson channels. In particular we compute the Bayesian estimator of a Po isson channel using the likelihood ratio and the discrete Malliavin gradient. This algorithm is suitable for numerical implementation via the Monte-Carlo scheme. As an application we provide an new proof of the formula obtained recently by Guo, Shamai and Verduu relating some derivatives of the input-output mutual information of a time-continuous Poisson channel and the conditional mean estimator of the input. These results are then extended to mixed Gaussian-Poisson channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا