ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the Fanaroff-Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS)

62   0   0.0 ( 0 )
 نشر من قبل Beatriz Mingo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relative positions of the high and low surface brightness regions of radio-loud active galaxies in the 3CR sample were found by Fanaroff and Riley to be correlated with their luminosity. We revisit this canonical relationship with a sample of 5805 extended radio-loud AGN from the LOFAR Two-Metre Sky Survey (LoTSS), compiling the most complete dataset of radio-galaxy morphological information obtained to date. We demonstrate that, for this sample, radio luminosity does *not* reliably predict whether a source is edge-brightened (FRII) or centre-brightened (FRI). We highlight a large population of low-luminosity FRIIs, extending three orders of magnitude below the traditional FR break, and demonstrate that their host galaxies are on average systematically fainter than those of high-luminosity FRIIs and of FRIs matched in luminosity. This result supports the jet power/environment paradigm for the FR break: low-power jets may remain undisrupted and form hotspots in lower mass hosts. We also find substantial populations that appear physically distinct from the traditional FR classes, including candidate restarting sources and ``hybrids. We identify 459 bent-tailed sources, which we find to have a significantly higher SDSS cluster association fraction (at $z<0.4$) than the general radio-galaxy population, similar to the results of previous work. The complexity of the LoTSS faint, extended radio sources demonstrates the need for caution in the automated classification and interpretation of extended sources in modern radio surveys, but also reveals the wealth of morphological information such surveys will provide and its value for advancing our physical understanding of radio-loud AGN.



قيم البحث

اقرأ أيضاً

An understanding of the relationship between radio-loud active galaxies and their large-scale environments is essential for realistic modelling of radio-galaxy evolution and environmental impact, for understanding AGN triggering and life cycles, and for calibrating galaxy feedback in cosmological models. We use the LOFAR Two-Metre Sky Survey (LoTSS) Data Release 1 catalogues to investigate this relationship. We cross-matched 8,745 radio-loud AGN with 0.08<z<0.4, selected from LoTSS, with two Sloan Digital Sky Survey cluster catalogues, and find that only 10 percent of LoTSS AGN in this redshift range have an association, so that the majority of low-redshift AGN (including a substantial fraction of the most radio-luminous objects) must inhabit haloes with M < 10^14 M_sun. We find that the probability of a cluster association, and the richness of the associated cluster, is correlated with AGN radio luminosity, and for the cluster population, the number of associated AGN and the radio luminosity of the brightest associated AGN is richness-dependent. We demonstrate that these relations are not driven solely by host-galaxy stellar mass, supporting models in which large-scale environment is influential in driving AGN jet activity. At the lowest radio luminosities we find that the minority of objects with a cluster association are located at larger mean cluster-centre distances than more luminous AGN, which appears to be driven primarily by host-galaxy mass. Finally, we also find that FRI radio galaxies inhabit systematically richer environments than FRIIs. The work presented here demonstrates the potential of LoTSS for AGN environmental studies. In future, the full northern-sky LoTSS catalogue, together with the use of deeper optical/IR imaging data and spectroscopic follow-up with WEAVE-LOFAR, will provide opportunities to extend this type of work to much larger samples and higher redshifts.
Winged radio sources are a small sub-class of extragalactic radio sources which display a pair of low surface brightness radio lobes, known as `wings aligned at a certain angle with the primary jets. Depending on the location of wings, these galaxies look like X or Z and are known as X-shaped Radio Galaxy (XRG) or Z-shaped Radio Galaxy (ZRG). We report the identification of 33 winged radio sources from the LOFAR Two-metre Sky Survey First Data Release (LoTSS DR1) out of which 21 sources are identified as X-shaped radio galaxies and 12 as Z-shaped radio galaxies. Optical counterparts are identified for 14 XRGs (67 per cent) and 12 ZRGs (100 per cent). We studied various physical parameters of these sources like spectral index, radio luminosity, and power. The radio spectrum of the majority of XRGs and ZRGs is steep ($alpha_{1400}^{144}>0.5$), which is typical of lobe dominated radio galaxies. The statistical studies are done on the relative size of the major and minor axes and the angle between the major axis and minor axis for XRGs.
Red quasi-stellar objects (QSOs) are a subset of the luminous end of the cosmic population of active galactic nuclei (AGN), most of which are reddened by intervening dust along the line-of-sight towards their central engines. In recent work from our team, we developed a systematic technique to select red QSOs from the Sloan Digital Sky Survey (SDSS), and demonstrated that they have distinctive radio properties using the Faint Images of the Radio Sky at Twenty centimeters (FIRST) radio survey. Here we expand our study using low-frequency radio data from the LOFAR Two-metre Sky Survey (LoTSS). With the improvement in depth that LoTSS offers, we confirm key results: compared to a control sample of normal blue QSOs matched in redshift and accretion power, red QSOs have a higher radio detection rate and a higher incidence of compact radio morphologies. For the first time, we also demonstrate that these differences arise primarily in sources of intermediate radio-loudness: radio-intermediate red QSOs are $times 3$ more common than typical QSOs, but the excess diminishes among the most radio-loud and the most radio-quiet systems in our study. We develop Monte-Carlo simulations to explore whether differences in star formation could explain these results, and conclude that, while star formation is an important source of low-frequency emission among radio-quiet QSOs, a population of AGN-driven compact radio sources is the most likely cause for the distinct low-frequency radio properties of red QSOs. Our study substantiates the conclusion that fundamental differences must exist between the red and normal blue QSO populations.
The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168 MHz survey of the Northern sky with diverse and ambitious science goals. Many of the scientific objectives of LoTSS rely upon, or are enhanced by, the association or separation of the sometimes incorrectly catalogued radio components into distinct radio sources, and the identification and characterisation of the optical counterparts to these sources. Here we present the source associations and optical and/or IR identifications for sources in the first data release, which are made using a combination of statistical techniques and visual association and identification. We document in detail the colour- and magnitude-dependent likelihood ratio method used for statistical identification as well as the Zooniverse project, called LOFAR Galaxy Zoo, used for the visual classification. We describe the process used to select which of these two different methods is most appropriate for each LoTSS source. The final LoTSS-DR1-IDs value-added catalogue presented contains 318,520 radio sources, of which 231,716 (73%) have optical and/or IR identifications in Pan-STARRS and WISE. The value-added catalogue is available online at https://lofar-surveys.org/, as part of this data release.
We use the LOFAR Two-metre Sky Survey (LoTSS) Data Release I to identify the groups of galaxies (and individual galaxies) from the Hickson Compact Groups and Magnitude Limited Compact Groups samples that emit at the frequency of 150,MHz, characterise their radio emission (extended or limited to the galaxies), and compare new results to earlier observations and theoretical predictions. The detection of 73 systems (and 7 more -- probably) out of 120, of which as many as 17 show the presence of extended radio structures, confirms the previous hypothesis of the common character of the magnetic field inside galaxy groups and its detectability. In order to investigate the future potential of low-frequency radio studies of galaxy groups, we also present a more detailed insight into four radio-emitting systems, for which the strength of the magnetic field inside their intergalactic medium (IGM) is calculated. The estimated values are comparable to that found inside star-forming galaxies, suggesting a dynamical and evolutionary importance of the magnetic field in galaxy groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا