ترغب بنشر مسار تعليمي؟ اضغط هنا

StackVault: Protection from Untrusted Functions

61   0   0.0 ( 0 )
 نشر من قبل Qi Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data exfiltration attacks have led to huge data breaches. Recently, the Equifax attack affected 147M users and a third-party library - Apache Struts - was alleged to be responsible for it. These attacks often exploit the fact that sensitive data are stored unencrypted in process memory and can be accessed by any function executing within the same process, including untrusted third-party library functions. This paper presents StackVault, a kernel-based system to prevent sensitive stack-based data from being accessed in an unauthorized manner by intra-process functions. Stack-based data includes data on stack as well as data pointed to by pointer variables on stack. StackVault consists of three components: (1) a set of programming APIs to allow users to specify which data needs to be protected, (2) a kernel module which uses unforgeable function identities to reliably carry out the sensitive data protection, and (3) an LLVM compiler extension that enables transparent placement of stack protection operations. The StackVault system automatically enforces stack protection through spatial and temporal access monitoring and control over both sensitive stack data and untrusted functions. We implemented StackVault and evaluated it using a number of popular real-world applications, including gRPC. The results show that StackVault is effective and efficient, incurring only up to 2.4% runtime overhead.



قيم البحث

اقرأ أيضاً

Semiconductor design companies are integrating proprietary intellectual property (IP) blocks to build custom integrated circuits (IC) and fabricate them in a third-party foundry. Unauthorized IC copies cost these companies billions of dollars annuall y. While several methods have been proposed for hardware IP obfuscation, they operate on the gate-level netlist, i.e., after the synthesis tools embed the semantic information into the netlist. We propose ASSURE to protect hardware IP modules operating on the register-transfer level (RTL) description. The RTL approach has three advantages: (i) it allows designers to obfuscate IP cores generated with many different methods (e.g., hardware generators, high-level synthesis tools, and pre-existing IPs). (ii) it obfuscates the semantics of an IC before logic synthesis; (iii) it does not require modifications to EDA flows. We perform a cost and security assessment of ASSURE.
This work presents ContractChecker, a Blockchain-based security protocol for verifying the storage consistency between the mutually distrusting cloud provider and clients. Unlike existing protocols, the ContractChecker uniquely delegates log auditing to the Blockchain, and has the advantages in reducing client cost and lowering requirements on client availability, lending itself to modern scenarios with mobile and web clients. The ContractChecker collects the logs from both clients and the cloud server, and verifies the consistency by cross-checking the logs. By this means, it does not only detects the attacks from malicious clients and server forging their logs, but also is able to mitigate those attacks and recover the system from them. In addition, we design new attacks against ContractChecker exploiting various limits in real Blockchain systems (e.g., write unavailability, Blockchain forks, contract race conditions). We analyze and harden the security of ContractChecker protocols against the proposed new attacks. For evaluating the cost, we build a functional prototype of the ContractChecker on Ethereum/Solidity. By experiments on private and public Ethereum testnets, we extensively evaluate the cost of the ContractChecker in comparison with that of existing client-based log auditing works. The result shows the ContractChecker can scale to hundreds of clients and save client costs by more than one order of magnitude.
133 - Le Guan , Jun Xu , Shuai Wang 2016
Nowadays, auto insurance companies set personalized insurance rate based on data gathered directly from their customers cars. In this paper, we show such a personalized insurance mechanism -- wildly adopted by many auto insurance companies -- is vuln erable to exploit. In particular, we demonstrate that an adversary can leverage off-the-shelf hardware to manipulate the data to the device that collects drivers habits for insurance rate customization and obtain a fraudulent insurance discount. In response to this type of attack, we also propose a defense mechanism that escalates the protection for insurers data collection. The main idea of this mechanism is to augment the insurers data collection device with the ability to gather unforgeable data acquired from the physical world, and then leverage these data to identify manipulated data points. Our defense mechanism leveraged a statistical model built on unmanipulated data and is robust to manipulation methods that are not foreseen previously. We have implemented this defense mechanism as a proof-of-concept prototype and tested its effectiveness in the real world. Our evaluation shows that our defense mechanism exhibits a false positive rate of 0.032 and a false negative rate of 0.013.
102 - Diego Bendersky 2010
Software digital rights management is a pressing need for the software development industry which remains, as no practical solutions have been acclamaimed succesful by the industry. We introduce a novel software-protection method, fully implemented w ith todays technologies, that provides traitor tracing and license enforcement and requires no additional hardware nor inter-connectivity. Our work benefits from the use of secure triggers, a cryptographic primitive that is secure assuming the existence of an ind-cpa secure block cipher. Using our framework, developers may insert license checks and fingerprints, and obfuscate the code using secure triggers. As a result, this rises the cost that software analysis tools have detect and modify protection mechanisms. Thus rising the complexity of cracking this system.
In this paper, we study the privacy-preserving task assignment in spatial crowdsourcing, where the locations of both workers and tasks, prior to their release to the server, are perturbed with Geo-Indistinguishability (a differential privacy notion f or location-based systems). Different from the previously studied online setting, where each task is assigned immediately upon arrival, we target the batch-based setting, where the server maximizes the number of successfully assigned tasks after a batch of tasks arrive. To achieve this goal, we propose the k-Switch solution, which first divides the workers into small groups based on the perturbed distance between workers/tasks, and then utilizes Homomorphic Encryption (HE) based secure computation to enhance the task assignment. Furthermore, we expedite HE-based computation by limiting the size of the small groups under k. Extensive experiments demonstrate that, in terms of the number of successfully assigned tasks, the k-Switch solution improves batch-based baselines by 5.9X and the existing online solution by 1.74X, with no privacy leak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا