ﻻ يوجد ملخص باللغة العربية
We map the spectrum of $1to 2$ parton splittings inside a medium characterized by a transport coefficient $hat q$ onto the kinematical Lund plane, taking into account the finite formation time of the process. We discuss the distinct regimes arising in this map for in-medium splittings, pointing out the close correspondence to a semi-classical description in the limit of hard, collinear radiation with short formation times. Although we disregard any modifications of the original parton kinematics in course of the propagation through the medium, subtle modifications to the radiation pattern compared to the vacuum baseline can be traced back to the physics of color decoherence and accumulated interactions in the medium. We provide theoretical support to vacuum-like emissions inside the medium by delimiting the regions of phase space where it is dominant, identifying also the relevant time-scales involved. The observed modifications are shown to be quite general for any dipole created in the medium.
We investigate the radiative break-up of a highly energetic quark or gluon in a high-temperature QCD plasma. Within an inertial range of momenta $T ll omega ll E$, where $E$ denotes the energy of the original hard parton (jet) and $T$ the temperature
We present a new expansion scheme to compute the rate for parton splittings in dense and finite QCD media. In contrast to the standard opacity expansion, our expansion is performed around the harmonic oscillator whose characteristic frequency depends
We revisit the calculation of the medium-induced gluon radiative spectrum and propose a novel expansion scheme that encompasses the two known analytic limits: i) the high frequency regime dominated by a single hard scattering that corresponds to the
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton dist
The unpolarized, helicity and transversity parton distribution functions of the nucleon are studied within a convolution model where the bare nucleon is dressed by its virtual meson cloud. Using light-front time-ordered perturbation theory, the Fock