ﻻ يوجد ملخص باللغة العربية
The magnetically frustrated spin ice family of materials is host to numerous exotic phenomena such as magnetic monopole excitations and macroscopic residual entropy extending to low temperature. A finite-temperature ordering transition in the absence of applied fields has not been experimentally observed in the classical spin ice materials Dy2Ti2O7 and Ho2Ti2O7. Such a transition could be induced by the application of pressure, and in this work we consider the effects of uniaxial pressure on classical spin ice systems. Theoretically we find that the pressure induced ordering transition in Dy2Ti2O7 is strongly affected by the dipolar interaction. We also report measurements on the neutron structure factor of Ho2Ti2O7 under pressure, and compare the experimental results to the predictions of our theoretical model.
The spin ice materials Ho2Ti2O7 and Dy2Ti2O7 are experimental and theoretical exemplars of highly frustrated magnetic materials. However, the effects of an applied uniaxial pressure are not well studied, and here we report magnetization measurements
A promising route to realize entangled magnetic states combines geometrical frustration with quantum-tunneling effects. Spin-ice materials are canonical examples of frustration, and Ising spins in a transverse magnetic field are the simplest many-bod
We study the low-temperature behaviour of spin ice when uniaxial pressure induces a tetragonal distortion. There is a phase transition between a Coulomb liquid and a fully magnetised phase. Unusually, it combines features of discontinuous and continu
When degenerate states are separated by large energy barriers, the approach to thermal equilibrium can be slow enough that physical properties are defined by the thermalization process rather than the equilibrium. The exploration of thermalization pu
We report comprehensive small angle neutron scattering (SANS) measurements complemented by ac susceptibility data of the helical order, conical phase and skyrmion lattice phase (SLP) in MnSi under uniaxial pressures. For all crystallographic orientat