ﻻ يوجد ملخص باللغة العربية
Classical optimization techniques often formulate the feasibility of the problems as set, equality or inequality constraints. However, explicitly designing these constraints is indeed challenging for complex real-world applications and too strict constraints may even lead to intractable optimization problems. On the other hand, it is still hard to incorporate data-dependent information into conventional numerical iterations. To partially address the above limits and inspired by the leader-follower gaming perspective, this work first introduces a bilevel-type formulation to jointly investigate the feasibility and optimality of nonconvex and nonsmooth optimization problems. Then we develop an algorithmic framework to couple forward-backward proximal computations to optimize our established bilevel leader-follower model. We prove its convergence and estimate the convergence rate. Furthermore, a learning-based extension is developed, in which we establish an unrolling strategy to incorporate data-dependent network architectures into our iterations. Fortunately, it can be proved that by introducing some mild checking conditions, all our original convergence results can still be preserved for this learnable extension. As a nontrivial byproduct, we demonstrate how to apply this ensemble-like methodology to address different low-level vision tasks. Extensive experiments verify the theoretical results and show the advantages of our method against existing state-of-the-art approaches.
Ill-posed linear inverse problems appear in many image processing applications, such as deblurring, super-resolution and compressed sensing. Many restoration strategies involve minimizing a cost function, which is composed of fidelity and prior terms
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk
The aim of this paper is to investigate the use of an entropic projection method for the iterative regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case o
The analysis of linear ill-posed problems often is carried out in function spaces using tools from functional analysis. However, the numerical solution of these problems typically is computed by first discretizing the problem and then applying tools
Bilevel optimization has been widely applied in many important machine learning applications such as hyperparameter optimization and meta-learning. Recently, several momentum-based algorithms have been proposed to solve bilevel optimization problems