ﻻ يوجد ملخص باللغة العربية
Download fraud is a prevalent threat in mobile App markets, where fraudsters manipulate the number of downloads of Apps via various cheating approaches. Purchased fake downloads can mislead recommendation and search algorithms and further lead to bad user experience in App markets. In this paper, we investigate download fraud problem based on a companys App Market, which is one of the most popular Android App markets. We release a honeypot App on the App Market and purchase fake downloads from fraudster agents to track fraud activities in the wild. Based on our interaction with the fraudsters, we categorize download fraud activities into three types according to their intentions: boosting front end downloads, optimizing App search ranking, and enhancing user acquisition&retention rate. For the download fraud aimed at optimizing App search ranking, we select, evaluate, and validate several features in identifying fake downloads based on billions of download data. To get a comprehensive understanding of download fraud, we further gather stances of App marketers, fraudster agencies, and market operators on download fraud. The followed analysis and suggestions shed light on the ways to mitigate download fraud in App markets and other social platforms. To the best of our knowledge, this is the first work that investigates the download fraud problem in mobile App markets.
App builders commonly use security challenges, a form of step-up authentication, to add security to their apps. However, the ethical implications of this type of architecture has not been studied previously. In this paper, we present a large-scale me
Enterprise Mobility has been increasing the reach over the years. Initially Mobile devices were adopted as consumer devices. However, the enterprises world over have rightly taken the leap and started using the ubiquitous technology for managing its
The dramatic growth in smartphone malware shows that malicious program developers are shifting from traditional PC systems to smartphone devices. Therefore, security researchers are also moving towards proposing novel antimalware methods to provide a
In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (calle
Androids security model severely limits the capabilities of anti-malware software. Unlike commodity anti-malware solutions on desktop systems, their Android counterparts run as sandboxed applications without root privileges and are limited by Android