ﻻ يوجد ملخص باللغة العربية
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.
We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et al. (2019) can fail to capture natural invariances, at least when used in its practical linear form, and even on very simple problems which directly follow the motivating e
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD). To address this problem, Invariant Risk Minimization (IRM) objective was suggested
The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and find
Privacy concern has been increasingly important in many machine learning (ML) problems. We study empirical risk minimization (ERM) problems under secure multi-party computation (MPC) frameworks. Main technical tools for MPC have been developed based
Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain