ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Network-based Speech Enhancement for Cochlear Implant Recipients

149   0   0.0 ( 0 )
 نشر من قبل Nursadul Mamun Mr.
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attempts to develop speech enhancement algorithms with improved speech intelligibility for cochlear implant (CI) users have met with limited success. To improve speech enhancement methods for CI users, we propose to perform speech enhancement in a cochlear filter-bank feature space, a feature-set specifically designed for CI users based on CI auditory stimuli. We leverage a convolutional neural network (CNN) to extract both stationary and non-stationary components of environmental acoustics and speech. We propose three CNN architectures: (1) vanilla CNN that directly generates the enhanced signal; (2) spectral-subtraction-style CNN (SS-CNN) that first predicts noise and then generates the enhanced signal by subtracting noise from the noisy signal; (3) Wiener-style CNN (Wiener-CNN) that generates an optimal mask for suppressing noise. An important problem of the proposed networks is that they introduce considerable delays, which limits their real-time application for CI users. To address this, this study also considers causal variations of these networks. Our experiments show that the proposed networks (both causal and non-causal forms) achieve significant improvement over existing baseline systems. We also found that causal Wiener-CNN outperforms other networks, and leads to the best overall envelope coefficient measure (ECM). The proposed algorithms represent a viable option for implementation on the CCi-MOBILE research platform as a pre-processor for CI users in naturalistic environments.



قيم البحث

اقرأ أيضاً

Recurrent neural networks (RNNs) have shown significant improvements in recent years for speech enhancement. However, the model complexity and inference time cost of RNNs are much higher than deep feed-forward neural networks (DNNs). Therefore, these limit the applications of speech enhancement. This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning. The TDNN has excellent potential for capturing long range temporal contexts, which utilizes a modular and incremental design. Besides, the TDNN preserves the feed-forward structure so that its inference cost is comparable to standard DNN. To make full use of the training data, we propose a full data learning method for speech enhancement. More specifically, we not only use the noisy-to-clean (input-to-target) to train the enhanced model, but also the clean-to-clean and noise-to-silence data. Therefore, all of the training data can be used to train the enhanced model. Our experiments are conducted on TIMIT dataset. Experimental results show that our proposed method could achieve a better performance than DNN and comparable even better performance than BLSTM. Meanwhile, compared with the BLSTM, the proposed method drastically reduce the inference time.
Speech enhancement (SE) aims to reduce noise in speech signals. Most SE techniques focus on addressing audio information only. In this work, inspired by multimodal learning, which utilizes data from different modalities, and the recent success of con volutional neural networks (CNNs) in SE, we propose an audio-visual deep CNN (AVDCNN) SE model, which incorporates audio and visual streams into a unified network model. In the proposed AVDCNN SE model, audio and visual data are first processed using individual CNNs, and then, fused into a joint network to generate enhanced speech at the output layer. The AVDCNN model is trained in an end-to-end manner, and parameters are jointly learned through back-propagation. We evaluate enhanced speech using five objective criteria. Results show that the AVDCNN yields notably better performance, compared with an audio-only CNN-based SE model and two conventional SE approaches, confirming the effectiveness of integrating visual information into the SE process.
Existing generative adversarial networks (GANs) for speech enhancement solely rely on the convolution operation, which may obscure temporal dependencies across the sequence input. To remedy this issue, we propose a self-attention layer adapted from n on-local attention, coupled with the convolutional and deconvolutional layers of a speech enhancement GAN (SEGAN) using raw signal input. Further, we empirically study the effect of placing the self-attention layer at the (de)convolutional layers with varying layer indices as well as at all of them when memory allows. Our experiments show that introducing self-attention to SEGAN leads to consistent improvement across the objective evaluation metrics of enhancement performance. Furthermore, applying at different (de)convolutional layers does not significantly alter performance, suggesting that it can be conveniently applied at the highest-level (de)convolutional layer with the smallest memory overhead.
Cochlear implant (CI) users have considerable difficulty in understanding speech in reverberant listening environments. Time-frequency (T-F) masking is a common technique that aims to improve speech intelligibility by multiplying reverberant speech b y a matrix of gain values to suppress T-F bins dominated by reverberation. Recently proposed mask estimation algorithms leverage machine learning approaches to distinguish between target speech and reverberant reflections. However, the spectro-temporal structure of speech is highly variable and dependent on the underlying phoneme. One way to potentially overcome this variability is to leverage explicit knowledge of phonemic information during mask estimation. This study proposes a phoneme-based mask estimation algorithm, where separate mask estimation models are trained for each phoneme. Sentence recognition tests were conducted in normal hearing listeners to determine whether a phoneme-based mask estimation algorithm is beneficial in the ideal scenario where perfect knowledge of the phoneme is available. The results showed that the phoneme-based masks improved the intelligibility of vocoded speech when compared to conventional phoneme-independent masks. The results suggest that a phoneme-based speech enhancement strategy may potentially benefit CI users in reverberant listening environments.
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا