ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-Control of Localised Photo-Bio-Convection

82   0   0.0 ( 0 )
 نشر من قبل Marco Polin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microorganismal motility is often characterised by complex responses to environmental physico-chemical stimuli. Although the biological basis of these responses is often not well understood, their exploitation already promises novel avenues to directly control the motion of living active matter at both the individual and collective level. Here we leverage the phototactic ability of the model microalga {it Chlamydomonas reinhardtii} to precisely control the timing and position of localised cell photo-accumulation, leading to the controlled development of isolated bioconvective plumes. This novel form of photo-bio-convection allows a precise, fast and reconfigurable control of the spatio-temporal dynamics of the instability and the ensuing global recirculation, which can be activated and stopped in real time. A simple continuum model accounts for the phototactic response of the suspension and demonstrates how the spatio-temporal dynamics of the illumination field can be used as a simple external switch to produce efficient bio-mixing.



قيم البحث

اقرأ أيضاً

The persistent motility of the individual constituents in microbial suspensions represents a prime example of so-called active matter systems. Cells consume energy, exert forces and move, overall releasing the constraints of equilibrium statistical m echanics of passive elements and allowing for complex spatio-temporal patterns to emerge. Moreover, when subject to physico-chemical stimuli their collective behaviour often drives large scale instabilities of hydrodynamic nature, with implications for biomixing in natural environments and incipient industrial applications. In turn, our ability for external control of these driving stimuli could be used to govern the emerging patterns. Light, being easily manipulable and, at the same time, an important stimulus for a wide variety of microorganisms, is particularly well suited to this end. In this paper, we will discuss the current state, developments, and some of the emerging advances in the fundamentals and applications of light-induced bioconvection with a focus on recent experimental realisations and modelling efforts.
Despite their importance in many biological, ecological and physical processes, microorganismal fluid flows under tight confinement have not been investigated experimentally. Strong screening of Stokelets in this geometry suggests that the flow field s of different microorganisms should be universally dominated by the 2D source dipole from the swimmers finite-size body. Confinement therefore is poised to collapse differences across microorganisms, that are instead well-established in bulk. Here we combine experiments and theoretical modelling to show that, in general, this is not correct. Our results demonstrate that potentially minute details like microswimmers spinning and the physical arrangement of the propulsion appendages have in fact a leading role in setting qualitative topological properties of the hydrodynamic flow fields of micro-swimmers under confinement. This is well captured by an effective 2D model, even under relatively weak confinement. These results imply that active confined hydrodynamics is much richer than in bulk, and depends in a subtle manner on size, shape and propulsion mechanisms of the active components.
Many aquatic organisms exhibit remarkable abilities to detect and track chemical signals when foraging, mating and escaping. For example, the male copepod { em T. longicornis} identifies the female in the open ocean by following its chemically-flavor ed trail. Here, we develop a mathematical framework in which a local sensory system is able to detect the local concentration field and adjust its orientation accordingly. We show that this system is able to detect and track chemical trails without knowing the trails global or relative position.
The flexibility of the bacterial flagellar hook is believed to have substantial consequences for microorganism locomotion. Using a simplified model of a rigid flagellum and a flexible hook, we show that the paths of axisymmetric cell bodies driven by a single flagellum in Stokes flow are generically helical. Phase-averaged resistance and mobility tensors are produced to describe the flagellar hydrodynamics, and a helical rod model which retains a coupling between translation and rotation is identified as a distinguished asymptotic limit. A supercritical Hopf bifurcation in the flagellar orientation beyond a critical ratio of flagellar motor torque to hook bending stiffness, which is set by the spontaneous curvature of the flexible hook, the shape of the cell body, and the flagellum geometry, can have a dramatic effect on the cells trajectory through the fluid. Although the equilibrium hook angle can result in a wide variance in the trajectorys helical pitch, we find a very consistent prediction for the trajectorys helical amplitude using parameters relevant to swimming P. aeruginosa cells.
Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding, to grazing, viral infection and cell-cell communication. The window of opportunity for these interactions is ultima tely determined by the physical mechanism that enables proximity and governs the contact time. Jeanneret et al. (Nat. Comm. 7: 12518, 2016) reported recently that for the biflagellate microalga Chlamydomonas reinhardtii contact with microparticles is controlled by events in which the object is entrained by the swimmer over large distances. However, neither the universality of this interaction mechanism nor its physical origins are currently understood. Here we show that particle entrainment is indeed a generic feature for microorganisms either pushed or pulled by flagella. By combining experiments, simulations and analytical modelling we reveal that entrainment length, and therefore contact time, can be understood within the framework of Taylor dispersion as a competition between advection by the no slip surface of the cell body and microparticle diffusion. The existence of an optimal tracer size is predicted theoretically, and observed experimentally for C. reinhardtii. Spatial organisation of flagella, swimming speed, swimmer and tracer size influence entrainment features and provide different trade-offs that may be tuned to optimise microbial interactions like predation and infection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا