ﻻ يوجد ملخص باللغة العربية
This article presents a set of tools for the modeling of a spatial allocation problem in a large geographic market and gives examples of applications. In our settings, the market is described by a network that maps the cost of travel between each pair of adjacent locations. Two types of agents are located at the nodes of this network. The buyers choose the most competitive sellers depending on their prices and the cost to reach them. Their utility is assumed additive in both these quantities. Each seller, taking as given other sellers prices, sets her own price to have a demand equal to the one we observed. We give a linear programming formulation for the equilibrium conditions. After formally introducing our model we apply it on two examples: prices offered by petrol stations and quality of services provided by maternity wards. These examples illustrate the applicability of our model to aggregate demand, rank prices and estimate cost structure over the network. We insist on the possibility of applications to large scale data sets using modern linear programming solvers such as Gurobi. In addition to this paper we released a R toolbox to implement our results and an online tutorial (http://optimalnetwork.github.io)
Despite decades of research on approximate query processing (AQP), our understanding of sample-based joins has remained limited and, to some extent, even superficial. The common belief in the community is that joining random samples is futile. This b
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: causal optimal transport. This new method direc
Optimal transport has become part of the standard quantitative economics toolbox. It is the framework of choice to describe models of matching with transfers, but beyond that, it allows to: extend quantile regression; identify discrete choice models;
We provide a computational complexity analysis for the Sinkhorn algorithm that solves the entropic regularized Unbalanced Optimal Transport (UOT) problem between two measures of possibly different masses with at most $n$ components. We show that the
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension