Nonperturbative Matrix Mechanics Approach to Spin-Split Landau Levels and g-Factor in Spin-Orbit Coupled Solids


الملخص بالإنكليزية

We have proposed a fully quantum approach to non-perturbatively calculate the spin-split Landau levels and g-factor of various spin-orbit coupled solids, based on the k.p theory in the matrix mechanics representation. The new method considers the detailed band structure and the multiband effect of spin-orbit coupling irrespective of the magnetic field strength. An application of this method to PbTe, a typical Dirac electron system, is shown. Contrary to popular belief, it is shown that the spin-splitting parameter M, which is the ratio of the Zeeman to cyclotron energy, exhibits a remarkable magnetic-field-dependence. This field-dependence can rectify the existing discrepancy between experimental and theoretical results. We have also shown that M evaluated from the fan diagram plot is different from that determined as the ratio of the Zeeman to cyclotron energy, which also overturns common belief.

تحميل البحث