In this paper we look for the existence of large linear and algebraic structures of sequences of measurable functions with different modes of convergence. Concretely, the algebraic size of the family of sequences that are convergent in measure but not a.e.~pointwise, uniformly but not pointwise convergent, and uniformly convergent but not in $L^1$-norm, are analyzed. These findings extend and complement a number of earlier results by several authors.