ترغب بنشر مسار تعليمي؟ اضغط هنا

Incomplete Yamabe flows and removable singularities

121   0   0.0 ( 0 )
 نشر من قبل Mario B. Schulz
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Mario B. Schulz




اسأل ChatGPT حول البحث

We study the Yamabe flow on a Riemannian manifold of dimension $mgeq3$ minus a closed submanifold of dimension $n$ and prove that there exists an instantaneously complete solution if and only if $n>frac{m-2}{2}$. In the remaining cases $0leq nleqfrac{m-2}{2}$ including the borderline case, we show that the removability of the $n$-dimensional singularity is necessarily preserved along the Yamabe flow. In particular, the flow must remain geodesically incomplete as long as it exists. This is contrasted with the two-dimensional case, where instantaneously complete solutions always exist.



قيم البحث

اقرأ أيضاً

We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence and nonexistence results, focusing on the radial case, under some general hypothesis on the potential.
Conformal invariance of two-dimensional variational problems is a condition known to enable a blow-up analysis of solutions and to deduce the removability of singularities. In this paper, we identify another condition that is not only sufficient, but also necessary for such a removability of singularities. This is the validity of the Pohozaev identity. In situations where such an identity fails to hold, we introduce a new quantity, called the {it Pohozaev constant}, which on one hand measures the extent to which the Pohozaev identity fails and on the other hand provides a characterization of the singular behavior of a solution at an isolated singularity. We apply this to the blow-up analysis for super-Liouville type equations on Riemann surfaces with conical singularities, because in the presence of such singularities, conformal invariance no longer holds and a local singularity is in general non-removable unless the Pohozaev constant is vanishing.
We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3-manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelmans conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of three manifolds --- in particular to the Generalized Smale Conjecture --- which will appear in a subsequent paper.
We consider a geometric flow introduced by Gigli and Mantegazza which, in the case of smooth compact manifolds with smooth metrics, is tangen- tial to the Ricci flow almost-everywhere along geodesics. To study spaces with geometric singularities, we consider this flow in the context of smooth manifolds with rough metrics with sufficiently regular heat kernels. On an appropriate non- singular open region, we provide a family of metric tensors evolving in time and provide a regularity theory for this flow in terms of the regularity of the heat kernel. When the rough metric induces a metric measure space satisfying a Riemannian Curvature Dimension condition, we demonstrate that the distance induced by the flow is identical to the evolving distance metric defined by Gigli and Mantegazza on appropriate admissible points. Consequently, we demonstrate that a smooth compact manifold with a finite number of geometric conical singularities remains a smooth manifold with a smooth metric away from the cone points for all future times. Moreover, we show that the distance induced by the evolving metric tensor agrees with the flow of RCD(K, N) spaces defined by Gigli-Mantegazza.
358 - Ben Andrews , Yitao Lei , Yong Wei 2021
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other low er order anisotropic curvature measures with nonnegative coefficients is a scaled Wulff shape. This generalizes the classical results by Schneider [Comment. Math. Helv. textbf{54} (1979), 42--60] and by Kohlmann [Arch. Math. (Basel) textbf{70} (1998), 250--256] to the anisotropic setting. The main ingredients in the proof are the generalized anisotropic Minkowski formulas and an inequality of Heintze--Karcher type for convex bodies. In the second part, we consider the volume preserving flow of smooth closed convex hypersurfaces in the Euclidean space with speed given by a positive power $alpha $ of the $k$th anisotropic mean curvature plus a global term chosen to preserve the enclosed volume of the evolving hypersurfaces. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to the Wulff shape in the Hausdorff sense. The characterization theorem for Wulff shapes via the anisotropic curvature measures will be used crucially in the proof of the convergence result. Moreover, in the cases $k=1$, $n$ or $alphageq k$, we can further improve the Hausdorff convergence to the smooth and exponential convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا