ﻻ يوجد ملخص باللغة العربية
We present a randomized primal-dual algorithm that solves the problem $min_{x} max_{y} y^top A x$ to additive error $epsilon$ in time $mathrm{nnz}(A) + sqrt{mathrm{nnz}(A)n}/epsilon$, for matrix $A$ with larger dimension $n$ and $mathrm{nnz}(A)$ nonzero entries. This improves the best known exact gradient methods by a factor of $sqrt{mathrm{nnz}(A)/n}$ and is faster than fully stochastic gradient methods in the accurate and/or sparse regime $epsilon le sqrt{n/mathrm{nnz}(A)}$. Our results hold for $x,y$ in the simplex (matrix games, linear programming) and for $x$ in an $ell_2$ ball and $y$ in the simplex (perceptron / SVM, minimum enclosing ball). Our algorithm combines Nemirovskis conceptual prox-method and a novel reduced-variance gradient estimator based on sampling from the difference between the current iterate and a reference point.
We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_
We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extragradient, forward-backward-forward, and forward-reflected-ba
We study the conditions under which one is able to efficiently apply variance-reduction and acceleration schemes on finite sum optimization problems. First, we show that, perhaps surprisingly, the finite sum structure by itself, is not sufficient for
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potenti
We show how to sketch semidefinite programs (SDPs) using positive maps in order to reduce their dimension. More precisely, we use Johnsonhyp{}Lindenstrauss transforms to produce a smaller SDP whose solution preserves feasibility or approximates the v