ﻻ يوجد ملخص باللغة العربية
Eccentricity is a parameter of particular interest as it is an informative indicator of the past of planetary systems. It is however not always clear whether the eccentricity fitted on radial velocity data is real or if it is an artefact of an inappropriate modelling. In this work, we address this question in two steps: we first assume that the model used for inference is correct and present interesting features of classical estimators. Secondly, we study whether the eccentricity estimates are to be trusted when the data contain incorrectly modelled signals, such as missed planetary companions, non Gaussian noises, correlated noises with unknown covariance, etc. Our main conclusion is that data analysis via posterior distributions, with a model including a free error term gives reliable results provided two conditions. First, convergence of the numerical methods needs to be ascertained. Secondly, the noise power spectrum should not have a particularly strong peak at the semi period of the planet of interest. As a consequence, it is difficult to determine if the signal of an apparently eccentric planet might be due to another inner companion in 2:1 mean motion resonance. We study the use of Bayes factors to disentangle these cases. Finally, we suggest methods to check if there are hints of an incorrect model in the residuals. We show on simulated data the performance of our methods and comment on the eccentricities of Proxima b and 55 Cnc f.
Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used
We present results from a data challenge posed to the radial velocity (RV) community: namely, to quantify the Bayesian evidence for n={0,1,2,3} planets in a set of synthetically generated RV datasets containing a range of planet signals. Participatin
We present precise radial velocities of XO-2 taken with the Subaru HDS, covering two transits of XO-2b with an interval of nearly two years. The data suggest that the orbital eccentricity of XO-2b is consistent with zero within 2$sigma$ ($e=0.045pm0.
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide R
The hunt for Earth analogue planets orbiting Sun-like stars has forced the introduction of novel methods to detect signals at, or below, the level of the intrinsic noise of the observations. We present a new global periodogram method that returns mor