ﻻ يوجد ملخص باللغة العربية
The adoption of graphene in electronics, optoelectronics and photonics is hindered by the difficulty in obtaining high quality material on technologically-relevant substrates, over wafer-scale sizes and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, we demonstrate a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapour deposition (CVD). We identify via low energy electron diffraction (LEED), low energy electron microscopy (LEEM) and scanning tunneling microscopy (STM) measurements the Al-rich reconstruction root31R9 of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm2/Vs. We scale up the process to 4-inch and 6-inch wafer sizes and demonstrate that metal contamination levels are within the limits for back-end-of-line (BEOL) integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.
Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (>5,000 cm2 V-1 s-1) mobility devices with reliable
We demonstrate that the confocal laser scanning microscopy (CLSM) provides a non-destructive, highly-efficient characterization method for large-area epitaxial graphene and graphene nanostructures on SiC substrates, which can be applied in ambient ai
We report on spectroscopy results from the mid- to far-infrared on wafer-scale graphene, grown either epitaxially on silicon carbide, or by chemical vapor deposition. The free carrier absorption (Drude peak) is simultaneously obtained with the univer
Graphene is a material with enormous potential for numerous applications. Therefore, significant efforts are dedicated to large-scale graphene production using a chemical vapor deposition (CVD) technique. In addition, research is directed at developi
Mass production of photonic integrated circuits requires high-throughput wafer-level testing. We demonstrate that optical probes equipped with 3D-printed elements allow for efficient coupling of light to etched facets of nanophotonic waveguides. The