ﻻ يوجد ملخص باللغة العربية
We compute the topological entanglement entropy for a large set of lattice models in $d$-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are generalizations going beyond gauge theories, which are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of $d$-dimensional quantum systems derived from Abelian higher gauge theories. In this paper, we derive a general formula for the bipartition entanglement entropy for this class of models, and from it we extract both the area law and the sub-leading terms, which explicitly depend on the topology of the entangling surface. We show that the entanglement entropy $S_A$ in a sub-region $A$ is proportional to $log(GSD_{tilde{A}})$, where (GSD_{tilde{A}}) is the ground state degeneracy of a particular restriction of the full model to (A). The quantity $GSD_{tilde{A}}$ can be further divided into a contribution that scales with the size of the boundary $partial A$ and a term which depends on the topology of $partial A$. There is also a topological contribution coming from $A$ itself, that may be non-zero when $A$ has a non-trivial homology. We present some examples and discuss how the topology of $A$ affects the topological entropy. Our formalism allows us to do most of the calculation for arbitrary dimension $d$. The result is in agreement with entanglement calculations for known topological models.
We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total qua
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases,
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs
A given fractional quantum Hall state may admit multiple, distinct edge phases on its boundary. We explore the implications that multiple edge phases have for the entanglement spectrum and entropy of a given bulk state. We describe the precise manner
Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases --symmetry-protected topological (SPT) phases in particular--defined in one dimensional lattices. On the other hand, it is natural to expect that ga