ترغب بنشر مسار تعليمي؟ اضغط هنا

The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies and redshifts with 12 optical filters

98   0   0.0 ( 0 )
 نشر من قبل Roderik Overzier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg^2 of the celestial sphere in twelve optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-American Observatory, Chile. The telescope is equipped with a 9.2k by 9.2k e2v detector with 10 um pixels, resulting in a field-of-view of 2 deg^2 with a plate scale of 0.55/pixel. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (8000 deg^2 at |b| > 30 deg) and two areas of the Galactic plane and bulge (for an additional 1300 deg^2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 u, g, r, i, z broad-band filters and 7 narrow-band filters centered on prominent stellar spectral features: the Balmer jump/[OII], Ca H+K, H-delta, G-band, Mg b triplet, H-alpha, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (delta_z/(1+z) = 0.02 or better) for galaxies with r < 20 AB mag and redshift < 0.5, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)^3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg^2 of the Stripe-82 area, which is available at http://datalab.noao.edu/splus.



قيم البحث

اقرأ أيضاً

108 - A. J. Cenarro 2018
J-PLUS is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre. T80Cam is a 2 sq.deg field-of-view camera m ounted on this 83cm-diameter telescope, and is equipped with a unique system of filters spanning the entire optical range. This filter system is a combination of broad, medium and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000AA Balmer break region, H$delta$, Ca H+K, the G-band, the Mgb and Ca triplets) that are key to both characterize stellar types and to deliver a low-resolution photo-spectrum for each pixel of the sky observed. With a typical depth of AB $sim 21.25$ mag per band, this filter set thus allows for an indiscriminate and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photo-spectral information for all resolved galaxies in the local universe, as well as accurate photo-z estimates ($Delta,zsim 0.01-0.03$) for moderately bright (up to $rsim 20$ mag) extragalactic sources. While some narrow band filters are designed for the study of particular emission features ([OII]/$lambda$3727, H$alpha$/$lambda$6563) up to $z < 0.015$, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby universe (Milky Way, 2D IFU-like studies, stellar populations of nearby and moderate redshift galaxies, clusters of galaxies) and at high redshifts (ELGs at $zapprox 0.77, 2.2$ and $4.4$, QSOs, etc). With this paper, we release $sim 36$ sq.deg of J-PLUS data, containing about $1.5times 10^5$ stars and $10^5$ galaxies at $r<21$ mag.
From the approximately $sim$3,500 planetary nebulae (PNe) discovered in our Galaxy, only 14 are known to be members of the Galactic halo. Nevertheless, a systematic search for halo PNe has never been performed. In this study, we present new photometr ic diagnostic tools to identify compact PNe in the Galactic halo by making use of the novel 12-filter system projects, J-PLUS (Javalambre Photometric Local Universe Survey) and S-PLUS (Southern-Photometric Local Universe Survey). We reconstructed the IPHAS (Isaac Newton Telescope (INT) Photometric H${alpha}$ Survey of the Northern Galactic Plane) diagnostic diagram and propose four new ones using i) the J-PLUS and S-PLUS synthetic photometry for a grid of photo-ionisation models of halo PNe, ii) several observed halo PNe, as well as iii) a number of other emission-line objects that resemble PNe. All colour-colour diagnostic diagrams are validated using two known halo PNe observed by J-PLUS during the scientific verification phase and the first data release (DR1) of S-PLUS and the DR1 of J-PLUS. By applying our criteria to the DR1s ($sim$1,190 deg$^2$), we identified one PN candidate. However, optical follow-up spectroscopy proved it to be a H II region belonging to the UGC 5272 galaxy. Here, we also discuss the PN and two H II galaxies recovered by these selection criteria. Finally, the cross-matching with the most updated PNe catalogue (HASH) helped us to highlight the potential of these surveys, since we recover all the known PNe in the observed area. The tools here proposed to identify PNe and separate them from their emission-line contaminants proved to be very efficient thanks to the combination of many colours, even when applied -like in the present work- to an automatic photometric search that is limited to compact PNe.
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for whi ch the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5-dimensional magnitude and colour space. Our method achieves an average bias of $overline{Delta z_{rm norm}}=-2.01 times 10^{-4}$, a standard deviation of $sigma(Delta z_{rm norm})=0.0298$, and an outlier rate of $P_o=4.32%$ when cross-validating on the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our method are very close to those yielded by SDSS data. The proposed method has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky ($sim 3/4$ vs $sim 1/3$). The training set and the code implementing this method are publicly available at www.testaddress.com.
This paper provides a catalogue of stars, quasars, and galaxies for the Southern Photometric Local Universe Survey Data Release 2 (S-PLUS DR2) in the Stripe 82 region. We show that a 12-band filter system (5 Sloan-like and 7 narrow bands) allows bett er performance for object classification than the usual analysis based solely on broad bands (regardless of infrared information). Moreover, we show that our classification is robust against missing values. Using spectroscopically confirmed sources retrieved from the Sloan Digital Sky Survey DR16 and DR14Q, we train a random forest classifier with the 12 S-PLUS magnitudes + 4 morphological features. A second random forest classifier is trained with the addition of the W1 (3.4 $mu$m) and W2 (4.6 $mu$m) magnitudes from the Wide-field Infrared Survey Explorer (WISE). Forty-four percent of our catalogue have WISE counterparts and are provided with classification from both models. We achieve 95.76% (52.47%) of quasar purity, 95.88% (92.24%) of quasar completeness, 99.44% (98.17%) of star purity, 98.22% (78.56%) of star completeness, 98.04% (81.39%) of galaxy purity, and 98.8% (85.37%) of galaxy completeness for the first (second) classifier, for which the metrics were calculated on objects with (without) WISE counterpart. A total of 2,926,787 objects that are not in our spectroscopic sample were labelled, obtaining 335,956 quasars, 1,347,340 stars, and 1,243,391 galaxies. From those, 7.4%, 76.0%, and 58.4% were classified with probabilities above 80%. The catalogue with classification and probabilities for Stripe 82 S-PLUS DR2 is available for download.
The Southern Photometric Local Universe Survey (S-PLUS) is an ongoing survey of $sim$9300 deg$^2$ in the southern sky in a 12-band photometric system. This paper presents the second data release (DR2) of S-PLUS, consisting of 514 tiles covering an ar ea of 950 deg$^2$. The data has been fully calibrated using a new photometric calibration technique suitable for the new generation of wide-field multi-filter surveys. This technique consists of a $chi^2$ minimisation to fit synthetic stellar templates to already calibrated data from other surveys, eliminating the need for standard stars and reducing the survey duration by $sim$15%. We compare the template-predicted and S-PLUS instrumental magnitudes to derive the photometric zero-points (ZPs). We show that these ZPs can be further refined by fitting the stellar templates to the 12 S-PLUS magnitudes, which better constrain the models by adding the narrow-band information. We use the STRIPE82 region to estimate ZP errors, which are $lesssim10$ mmags for filters J0410, J0430, $g$, J0515, $r$, J0660, $i$, J0861 and $z$; $lesssim 15$ mmags for filter J0378; and $lesssim 25$ mmags for filters $u$ and J0395. We describe the complete data flow of the S-PLUS/DR2 from observations to the final catalogues and present a brief characterisation of the data. We show that, for a minimum signal-to-noise threshold of 3, the photometric depths of the DR2 range from 19.9 mag to 21.3 mag (measured in Petrosian apertures), depending on the filter. The S-PLUS DR2 can be accessed from the website: https://splus.cloud}{https://splus.cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا