Exploring effective charge in electromigration using machine learning


الملخص بالإنكليزية

The effective charge of an element is a parameter characterizing the electromgration effect, which can determine the reliability of interconnection in electronic technologies. In this work, machine learning approaches were employed to model the effective charge (z*) as a linear function of physically meaningful elemental properties. Average 5-fold (leave-out-alloy-group) cross-validation yielded root-mean-square-error divided by whole data set standard deviation (RMSE/$sigma$) values of 0.37 $pm$ 0.01 (0.22 $pm$ 0.18), respectively, and $R^2$ values of 0.86. Extrapolation to z* of totally new alloys showed limited but potentially useful predictive ability. The model was used in predicting z* for technologically relevant host-impurity pairs.

تحميل البحث