ﻻ يوجد ملخص باللغة العربية
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the complexity of computing a maximum independent set (MIS) is a long-standing open question in even-hole-free graphs. From the hardness point of view, MIS is W[1]-hard in the class of graphs without induced 4-cycle (when parameterized by the solution size). Halfway of these, we show in this paper that MIS is FPT when parameterized by the solution size in the class of even-hole-free graphs. The main idea is to apply twice the well-known technique of augmenting graphs to extend some initial independent set.
A vertex of a graph is bisimplicial if the set of its neighbors is the union of two cliques; a graph is quasi-line if every vertex is bisimplicial. A recent result of Chudnovsky and Seymour asserts that every non-empty even-hole-free graph has a bisi
In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows tha
A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, an
A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-f