ﻻ يوجد ملخص باللغة العربية
A flag is a sequence of nested subspaces. Flags are ubiquitous in numerical analysis, arising in finite elements, multigrid, spectral, and pseudospectral methods for numerical PDE; they arise in the form of Krylov subspaces in matrix computations, and as multiresolution analysis in wavelets constructions. They are common in statistics too --- principal component, canonical correlation, and correspondence analyses may all be viewed as methods for extracting flags from a data set. The main goal of this article is to develop the tools needed for optimizing over a set of flags, which is a smooth manifold called the flag manifold, and it contains the Grassmannian as the simplest special case. We will derive closed-form analytic expressions for various differential geometric objects required for Riemannian optimization algorithms on the flag manifold; introducing various systems of extrinsic coordinates that allow us to parameterize points, metrics, tangent spaces, geodesics, distance, parallel transport, gradients, Hessians in terms of matrices and matrix operations; and thereby permitting us to formulate steepest descent, conjugate gradient, and Newton algorithms on the flag manifold using only standard numerical linear algebra.
We investigate the $CR$ geometry of the orbits $M$ of a real form $G_0$ of a complex simple group $G$ in a complex flag manifold $X=G/Q$. We are mainly concerned with finite type, Levi non-degeneracy conditions, canonical $G_0$-equivariant and Mostow
We study, from the point of view of CR geometry, the orbits M of a real form G of a complex semisimple Lie group G in a complex flag manifold G/Q. In particular we characterize those that are of finite type and satisfy some Levi nondegeneracy conditi
We develop a new Riemannian descent algorithm that relies on momentum to improve over existing first-order methods for geodesically convex optimization. In contrast, accelerated convergence rates proved in prior work have only been shown to hold for
We consider optimization problems on Riemannian manifolds with equality and inequality constraints, which we call Riemannian nonlinear optimization (RNLO) problems. Although they have numerous applications, the existing studies on them are limited es
We study stochastic projection-free methods for constrained optimization of smooth functions on Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold. Specifically, we introduce stochastic Riemannian Fra