ﻻ يوجد ملخص باللغة العربية
Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{rm 155}$Gd and $^{rm 157}$Gd. We measured the $gamma$-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched $^{rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{rm 155}$Gd(n, $gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{rm 157}$Gd(n, $gamma$) reaction, and its performance confirmed with the independent data from the $^{rm nat}$Gd(n, $gamma$) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyse particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments.
We have measured the $gamma$-ray energy spectrum from the thermal neutron capture, ${}^{157}$Gd$(n,gamma){}^{158}$Gd, on an enriched $^{157}$Gd target (Gd$_{2}$O$_{3}$) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induce
A gas electron multiplier (GEM) detector with a gadolinium cathode has been developed to explore its potential application as a neutron detector. It consists of three standard-sized ($10times 10$ cm${}^{2}$) GEM foils and a thin gadolinium plate as t
Using the Double Chooz detector, designed to measure the neutrino mixing angle $theta_{13}$, the products of $mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3times10^6$ stopping cosmic $