ﻻ يوجد ملخص باللغة العربية
Let $Bo(T,tau)$ be the Borel $sigma$-algebra generated by the topology $tau$ on $T$. In this paper we show that if $K$ is a Hausdorff compact space, then every subset of $K$ is a Borel set if, and only if, $$Bo(C^*(K),w^*)=Bo(C^*(K),|cdot|);$$ where $w^*$ denotes the weak-star topology and $|cdot|$ is the dual norm with respect to the sup-norm on the space of real-valued continuous functions $C(K)$. Furthermore we study the topological properties of the Hausdorff compact spaces $K$ such that every subset is a Borel set. In particular we show that, if the axiom of choice holds true, then $K$ is scattered.
$C_p(X)$ denotes the space of continuous real-valued functions on a Tychonoff space $X$ endowed with the topology of pointwise convergence. A Banach space $E$ equipped with the weak topology is denoted by $E_{w}$. It is unknown whether $C_p(K)$ and $
The proximinality of certain subspaces of spaces of bounded affine functions is proved. The results presented here are some line
We study the recovery of multivariate functions from reproducing kernel Hilbert spaces in the uniform norm. Our main interest is to obtain preasymptotic estimates for the corresponding sampling numbers. We obtain results in terms of the decay of rela
The paper is concerned with the problem of identifying the norm attaining operators in the von Neumann algebra generated by two orthogonal projections on a Hilbert space. This algebra contains every skew projection on that Hilbert space and hence the
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic fa