On the number of resolvable Steiner triple systems of small 3-rank


الملخص بالإنكليزية

In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order $v$, where $v=3^k$, and $3$-rank $v-k$. We develop an approach to generalize this bound and estimate the number of isomorphism classes of STS$(v)$ of rank $v-k-1$ for an arbitrary $v$ of form $3^kT$.

تحميل البحث