ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity dark mode of distant coupled atom-cavity systems

94   0   0.0 ( 0 )
 نشر من قبل Takao Aoki
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a combined experimental and theoretical investigation into the normal modes of an all-fiber coupled cavity-quantum-electrodynamics system. The interaction between atomic ensembles and photons in the same cavities, and that between the photons in these cavities and the photons in the fiber connecting these cavities, generates five non-degenerate normal modes. We demonstrate our ability to excite each normal mode individually. We study particularly the `cavity dark mode, in which the two cavities coupled directly to the atoms do not exhibit photonic excitation. Through the observation of this mode, we demonstrate remote excitation and nonlocal saturation of atoms.



قيم البحث

اقرأ أيضاً

It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion wh ich is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light.
Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings Hubbard model, have the potential to emulate a wide range of condensed matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect ca n be realised. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read, which is the groundstate of a Hall Liquid with a 3-body interaction. In this paper we show how an effective 3-body interaction can be generated within the Cavity QED framework, and that a Pfaffian-like groundstate of these systems exists.
We demonstrate the trajectory measurement of the single neutral atoms deterministically using a high-finesse optical micro-cavity. Single atom strongly couples to the high-order transverse vacuum TEM_{10} mode, instead of the usual TEM_{00} mode, and the parameter of the system is (g_{10},kappa ,gamma )=2pi times (20.5,2.6,2.6)MHz. The atoms simply fall down freely from the magneto-optic trap into the cavity modes and the trajectories of the single atoms are linear. The transmission spectrums of atoms passing through the TEM10 mode are detected by a single photon counting modules and well fitted. Thanks to the tilted cavity transverse TEM10 mode, which is inclined to the vertical direction about 45 degrees and it helps us, for the first time, to eliminate the degenerate trajectory of the single atom falling through the cavity and get the unique atom trajectory. Atom position with high precision of 0.1{mu}m in the off-axis direction (axis y) is obtained, and the spatial resolution of 5.6{mu}m is achieved in time of 10{mu}s along the vertical direction (axis x). The average velocity of the atoms is also measured from the atom transits, which determines the temperature of the atoms in magneto-optic trap, 186{mu}K {pm} 19{mu}K.
137 - J. Busch , S. De , S. S. Ivanov 2011
Generating entanglement by simply cooling a system into a stationary state which is highly entangled has many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large spontaneous decay rates, and ach ieve high fidelities independent of their initial state. A possible implementation of this idea in atom-cavity systems has recently been proposed by Kastoryano et al. [Phys. Rev. Lett. 106, 090502 (2011)]. Here we propose an improved entanglement cooling scheme for two atoms inside an optical cavity which achieves higher fidelities for comparable single-atom cooperativity parameters C. For example, we predict fidelities above 90% even for C as low as 20 without requiring individual laser addressing and without having to detect photons.
253 - P. Maunz , T. Puppe , I. Schuster 2004
The energy-level structure of a single atom strongly coupled to the mode of a high-finesse optical cavity is investigated. The atom is stored in an intracavity dipole trap and cavity cooling is used to compensate for inevitable heating. Two well-reso lved normal modes are observed both in the cavity transmission and the trap lifetime. The experiment is in good agreement with a Monte Carlo simulation, demonstrating our ability to localize the atom to within $lambda/10$ at a cavity antinode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا