ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hunt for Primordial Interactions in the Large Scale Structures of the Universe

92   0   0.0 ( 0 )
 نشر من قبل Matteo Biagetti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matteo Biagetti




اسأل ChatGPT حول البحث

The understanding of the primordial mechanism that seeded the cosmic structures we observe today in the sky is one of the major goals in cosmology. The leading paradigm for such a mechanism is provided by the inflationary scenario, a period of violent accelerated expansion in the very early stages of evolution of the Universe. While our current knowledge of the physics of inflation is limited to phenomenological models which fit observations, an exquisite understanding of the particle content and interactions taking place during inflation would provide breakthroughs in our understanding of fundamental physics at high energies. In this review, we summarize recent theoretical progress in the modelling of the imprint of primordial interactions in the large scale structures of the Universe. We focus specifically on the effects of such interactions on the statistical distribution of dark matter halos, providing a consistent treatment of the steps required to connect the correlations generated among fields during inflation all the way to the late-time correlations of halos.



قيم البحث

اقرأ أيضاً

We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multi scale topology of a data set, in our context unifying the contributions of clusters, filament loops, and cosmic voids to cosmological constraints. We describe how this method captures the imprint of primordial local non-Gaussianity on the late-time distribution of dark matter halos, using a set of N-body simulations as a proxy for real data analysis. For our best single statistic, running the pipeline on several cubic volumes of size $40~(rm{Gpc/h})^{3}$, we detect $f_{rm NL}^{rm loc}=10$ at $97.5%$ confidence on $sim 85%$ of the volumes. Additionally we test our ability to resolve degeneracies between the topological signature of $f_{rm NL}^{rm loc}$ and variation of $sigma_8$ and argue that correctly identifying nonzero $f_{rm NL}^{rm loc}$ in this case is possible via an optimal template method. Our method relies on information living at $mathcal{O}(10)$ Mpc/h, a complementary scale with respect to commonly used methods such as the scale-dependent bias in the halo/galaxy power spectrum. Therefore, while still requiring a large volume, our method does not require sampling long-wavelength modes to constrain primordial non-Gaussianity. Moreover, our statistics are interpretable: we are able to reproduce previous results in certain limits and we make new predictions for unexplored observables, such as filament loops formed by dark matter halos in a simulation box.
We present a pipeline for characterizing and constraining initial conditions in cosmology via persistent homology. The cosmological observable of interest is the cosmic web of large scale structure, and the initial conditions in question are non-Gaus sianities (NG) of primordial density perturbations. We compute persistence diagrams and derived statistics for simulations of dark matter halos with Gaussian and non-Gaussian initial conditions. For computational reasons and to make contact with experimental observations, our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number. We use simulations with large NG ($f_{rm NL}^{rm loc}=250$) as templates for identifying data with mild NG ($f_{rm NL}^{rm loc}=10$), and running the pipeline on several cubic volumes of size $40~(textrm{Gpc/h})^{3}$, we detect $f_{rm NL}^{rm loc}=10$ at $97.5%$ confidence on $sim 85%$ of the volumes for our best single statistic. Throughout we benefit from the interpretability of topological features as input for statistical inference, which allows us to make contact with previous first-principles calculations and make new predictions.
Today, thanks in particular to the results of the ESA Planck mission, the concordance cosmological model appears to be the most robust to describe the evolution and content of the Universe from its early to late times. It summarizes the evolution of matter, made mainly of dark matter, from the primordial fluctuations generated by inflation around $10^{-30}$ second after the Big-Bang to galaxies and clusters of galaxies, 13.8 billion years later, and the evolution of the expansion of space, with a relative slowdown in the matter-dominated era and, since a few billion years, an acceleration powered by dark energy. But we are far from knowing the pillars of this model which are inflation, dark matter and dark energy. Comprehending these fundamental questions requires a detailed mapping of our observable Universe over the whole of cosmic time. The relic radiation provides the starting point and galaxies draw the cosmic web. JAXAs LiteBIRD mission will map the beginning of our Universe with a crucial test for inflation (its primordial gravity waves), and the ESA Euclid mission will map the most recent half part, crucial for dark energy. The mission concept, described in this White Paper, GAUSS, aims at being a mission to fully map the cosmic web up to the reionization era, linking early and late evolution, to tackle and disentangle the crucial degeneracies persisting after the Euclid era between dark matter and inflation properties, dark energy, structure growth and gravitation at large scale.
We perform a search for binary black hole mergers with one subsolar mass black hole and a primary component above $2 M_odot$ in the second observing run of LIGO/Virgo. Our analysis therefore extends previous searches into a mass region motivated by t he presence of a peak in any broad mass distribution of primordial black holes (PBHs) around $[2-3] M_odot$ coming from the equation of state reduction at the QCD transition. Four candidate events are found passing a false alarm rate (FAR) threshold of 2 per year, although none are statistically significant enough for being clear detections. We first derive model independent limits on the PBH merging rates assuming a null result of the search. Then we confront them to two recent scenarios in which PBHs can constitute up to the totality of the Dark Matter, explain LIGO/Virgo mergers and the possible observation of a stochastic gravitational-wave background by NANOGrav. We find that these models still pass the rate limits and conclude that the analysis of the O3 and O4 observing runs will be decisive to test the hypothesis of a primordial origin of black hole mergers.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا