Cumulative optical and infrared emission from galaxies accumulated over cosmological time scales, the extragalactic background light (EBL), could be probed by complementary techniques of direct observations and source counting in the visible and infrared as well as via its imprint on the signal of distant active galactic nuclei in gamma rays. We compare the visible and infrared measurements with the gamma-ray constraints and study if the discrepancies of the measurements with different methods could be due to the presence of features in the EBL spectrum that are localised in the micron wavelength range. We combined data on time-averaged spectra of selected blazars that were obtained by Fermi and ground-based gamma-ray telescopes. We also modelled the effect of absorption on EBL while allowing for the existence of a previously unaccounted spectral feature. We show that a previously reported excess in EBL flux in the $sim 1$~micron wavelength range is consistent with gamma-ray measurements, that is, if the excess has the form of a narrow feature of the width $delta lambda < lambda$ and an overall flux of up to 15 nW/(m$^2$ sr) above the minimal EBL, which is estimated from the visible and infrared source counts. Such bump-like spectral features could originate, for example, from decaying dark-matter particles, or either axions or peculiar astrophysical processes in the course of star-formation history. We discuss the possibilities for the search of spectral features in the EBL with the Cherenkov Telescope Array (CTA).