Bond strengthening in dense H2O and implications to planetary composition


الملخص بالإنكليزية

H2O is an important constituent in planetary bodies, controlling habitability and, in geologically-active bodies, plate tectonics. At pressures within the interior of many planets, the H-bonds in H2O collapse into stronger, ionic bonds. Here we present agreement between X-ray diffraction and Raman spectroscopy for the transition from ice-VII to ice-X occurring at a pressure of approximately 30.9 GPa by means of combining grain normalizing heat treatment via direct laser heating with static compression. This is evidenced by the emergence of the characteristic Raman mode of cuprite-like ice-X and an abrupt 2.5-fold increase in bulk modulus, implying a significant increase in bond strength. This is preceded by a transition from cubic ice-VII to a structure of tetragonal symmetry, ice-VIIt at 5.1 GPa. Our results significantly shift the mass/radius relationship of water-rich planets and define a high-pressure limit for release of chemically-bound water within the Earth, making the deep mantle a potential long-term reservoir of ancient water.

تحميل البحث