ﻻ يوجد ملخص باللغة العربية
Gravitational wave memory is theorized to arise from the integrated history of gravitational wave emission, and manifests as a spacetime deformation in the wake of a propagating gravitational wave. We explore the detectability of the memory signals from a population of coalescencing supermassive black hole binaries with pulsar timing arrays and the Laser Interferometer Space Antenna (LISA). We find that current pulsar timing arrays have poor prospects, but it is likely that between 1 and 10 memory events with signal-to-noise ratio in excess of 5 will occur within LISAs planned 4-year mission.
The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less mas
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m
We assess the detection prospects of a gravitational wave background associated with sub-luminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and cons
We optimize the third-generation gravitational-wave detector to maximize the range to detect core-collapse supernovae. Based on three-dimensional simulations for core-collapse and the corresponding gravitational-wave waveform emitted, the correspondi
We discuss the gravitational lensing of gravitational wave signals from coalescing binaries. We delineate the regime where wave effects are significant from the regime where geometric limit can be used. Further, we focus on the effect of micro-lensin