ﻻ يوجد ملخص باللغة العربية
Nowadays, people strive to improve the accuracy of deep learning models. However, very little work has focused on the quality of data sets. In fact, data quality determines model quality. Therefore, it is important for us to make research on how data quality affects on model quality. In this paper, we mainly consider four aspects of data quality, including Dataset Equilibrium, Dataset Size, Quality of Label, Dataset Contamination. We deign experiment on MNIST and Cifar-10 and try to find out the influence the four aspects make on model quality. Experimental results show that four aspects all have decisive impact on the quality of models. It means that decrease in data quality in these aspects will reduce the accuracy of model.
In this paper, we consider a type of image quality assessment as a task-specific measurement, which can be used to select images that are more amenable to a given target task, such as image classification or segmentation. We propose to train simultan
Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerabl
We introduce a novel Deep Reinforcement Learning (DRL) algorithm called Deep Quality-Value (DQV) Learning. DQV uses temporal-difference learning to train a Value neural network and uses this network for training a second Quality-value network that le
In recent years, convolutional neural networks have demonstrated promising performance in a variety of medical image segmentation tasks. However, when a trained segmentation model is deployed into the real clinical world, the model may not perform op
Retail food packaging contains information which informs choice and can be vital to consumer health, including product name, ingredients list, nutritional information, allergens, preparation guidelines, pack weight, storage and shelf life information